Real-time Online Multi-Object Tracking in Compressed Domain
- URL: http://arxiv.org/abs/2204.02081v1
- Date: Tue, 5 Apr 2022 09:47:24 GMT
- Title: Real-time Online Multi-Object Tracking in Compressed Domain
- Authors: Qiankun Liu, Bin Liu, Yue Wu, Weihai Li, Nenghai Yu
- Abstract summary: Recent online Multi-Object Tracking (MOT) methods have achieved desirable tracking performance.
Inspired by the fact that the adjacent frames are highly relevant and redundant, we divide the frames into key and non-key frames.
Our tracker is about 6x faster while maintaining a comparable tracking performance.
- Score: 66.40326768209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent online Multi-Object Tracking (MOT) methods have achieved desirable
tracking performance. However, the tracking speed of most existing methods is
rather slow. Inspired from the fact that the adjacent frames are highly
relevant and redundant, we divide the frames into key and non-key frames
respectively and track objects in the compressed domain. For the key frames,
the RGB images are restored for detection and data association. To make data
association more reliable, an appearance Convolutional Neural Network (CNN)
which can be jointly trained with the detector is proposed. For the non-key
frames, the objects are directly propagated by a tracking CNN based on the
motion information provided in the compressed domain. Compared with the
state-of-the-art online MOT methods,our tracker is about 6x faster while
maintaining a comparable tracking performance.
Related papers
- Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking [15.533652456081374]
Multi-object tracking (MOT) endeavors to precisely estimate identities and positions of multiple objects over time.
Modern detectors may occasionally miss some objects in certain frames, causing trackers to cease tracking prematurely.
We propose BUSCA, meaning to search', a versatile framework compatible with any online TbD system.
arXiv Detail & Related papers (2024-07-14T10:45:12Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOT is a novel, simple and efficient method for solving the problem of point tracking in a video.
We show that DOT is significantly more accurate than current optical flow techniques, outperforms sophisticated "universal trackers" like OmniMotion, and is on par with, or better than, the best point tracking algorithms like CoTracker.
arXiv Detail & Related papers (2023-12-01T18:59:59Z) - Collaborative Tracking Learning for Frame-Rate-Insensitive Multi-Object
Tracking [3.781471919731034]
Multi-object tracking (MOT) at low frame rates can reduce computational, storage and power overhead to better meet the constraints of edge devices.
We propose to explore collaborative tracking learning (ColTrack) for frame-rate-insensitive MOT in a query-based end-to-end manner.
arXiv Detail & Related papers (2023-08-11T02:25:58Z) - Tracking by Associating Clips [110.08925274049409]
In this paper, we investigate an alternative by treating object association as clip-wise matching.
Our new perspective views a single long video sequence as multiple short clips, and then the tracking is performed both within and between the clips.
The benefits of this new approach are two folds. First, our method is robust to tracking error accumulation or propagation, as the video chunking allows bypassing the interrupted frames.
Second, the multiple frame information is aggregated during the clip-wise matching, resulting in a more accurate long-range track association than the current frame-wise matching.
arXiv Detail & Related papers (2022-12-20T10:33:17Z) - Context-aware Visual Tracking with Joint Meta-updating [11.226947525556813]
We propose a context-aware tracking model to optimize the tracker over the representation space, which jointly meta-update both branches by exploiting information along the whole sequence.
The proposed tracking method achieves an EAO score of 0.514 on VOT2018 with the speed of 40FPS, demonstrating its capability of improving the accuracy and robustness of the underlying tracker with little speed drop.
arXiv Detail & Related papers (2022-04-04T14:16:00Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - TrackFormer: Multi-Object Tracking with Transformers [92.25832593088421]
TrackFormer is an end-to-end multi-object tracking and segmentation model based on an encoder-decoder Transformer architecture.
New track queries are spawned by the DETR object detector and embed the position of their corresponding object over time.
TrackFormer achieves a seamless data association between frames in a new tracking-by-attention paradigm.
arXiv Detail & Related papers (2021-01-07T18:59:29Z) - Learning Spatio-Appearance Memory Network for High-Performance Visual
Tracking [79.80401607146987]
Existing object tracking usually learns a bounding-box based template to match visual targets across frames, which cannot accurately learn a pixel-wise representation.
This paper presents a novel segmentation-based tracking architecture, which is equipped with a local-temporal memory network to learn accurate-temporal correspondence.
arXiv Detail & Related papers (2020-09-21T08:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.