RODD: A Self-Supervised Approach for Robust Out-of-Distribution
Detection
- URL: http://arxiv.org/abs/2204.02553v1
- Date: Wed, 6 Apr 2022 03:05:58 GMT
- Title: RODD: A Self-Supervised Approach for Robust Out-of-Distribution
Detection
- Authors: Umar Khalid, Ashkan Esmaeili, Nazmul Karim, Nazanin Rahnavard
- Abstract summary: We propose a simple yet effective generalized OOD detection method independent of out-of-distribution datasets.
Our approach relies on self-supervised feature learning of the training samples, where the embeddings lie on a compact low-dimensional space.
We empirically show that a pre-trained model with self-supervised contrastive learning yields a better model for uni-dimensional feature learning in the latent space.
- Score: 12.341250124228859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have addressed the concern of detecting and rejecting the
out-of-distribution (OOD) samples as a major challenge in the safe deployment
of deep learning (DL) models. It is desired that the DL model should only be
confident about the in-distribution (ID) data which reinforces the driving
principle of the OOD detection. In this paper, we propose a simple yet
effective generalized OOD detection method independent of out-of-distribution
datasets. Our approach relies on self-supervised feature learning of the
training samples, where the embeddings lie on a compact low-dimensional space.
Motivated by the recent studies that show self-supervised adversarial
contrastive learning helps robustify the model, we empirically show that a
pre-trained model with self-supervised contrastive learning yields a better
model for uni-dimensional feature learning in the latent space. The method
proposed in this work referred to as \texttt{RODD}, outperforms SOTA detection
performance on an extensive suite of benchmark datasets on OOD detection tasks.
On the CIFAR-100 benchmarks, \texttt{RODD} achieves a 26.97 $\%$ lower
false-positive rate (FPR@95) compared to SOTA methods.
Related papers
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Towards Realistic Out-of-Distribution Detection: A Novel Evaluation
Framework for Improving Generalization in OOD Detection [14.541761912174799]
This paper presents a novel evaluation framework for Out-of-Distribution (OOD) detection.
It aims to assess the performance of machine learning models in more realistic settings.
arXiv Detail & Related papers (2022-11-20T07:30:15Z) - How Useful are Gradients for OOD Detection Really? [5.459639971144757]
Out of distribution (OOD) detection is a critical challenge in deploying highly performant machine learning models in real-life applications.
We provide an in-depth analysis and comparison of gradient based methods for OOD detection.
We propose a general, non-gradient based method of OOD detection which improves over previous baselines in both performance and computational efficiency.
arXiv Detail & Related papers (2022-05-20T21:10:05Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - ReAct: Out-of-distribution Detection With Rectified Activations [20.792140933660075]
Out-of-distribution (OOD) detection has received much attention lately due to its practical importance.
One of the primary challenges is that models often produce highly confident predictions on OOD data.
We propose ReAct--a simple and effective technique for reducing model overconfidence on OOD data.
arXiv Detail & Related papers (2021-11-24T21:02:07Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.