LilNetX: Lightweight Networks with EXtreme Model Compression and
Structured Sparsification
- URL: http://arxiv.org/abs/2204.02965v1
- Date: Wed, 6 Apr 2022 17:59:10 GMT
- Title: LilNetX: Lightweight Networks with EXtreme Model Compression and
Structured Sparsification
- Authors: Sharath Girish and Kamal Gupta and Saurabh Singh and Abhinav
Shrivastava
- Abstract summary: LilNetX is an end-to-end trainable technique for neural networks.
It enables learning models with specified accuracy-rate-computation trade-off.
- Score: 36.651329027209634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce LilNetX, an end-to-end trainable technique for neural networks
that enables learning models with specified accuracy-rate-computation
trade-off. Prior works approach these problems one at a time and often require
post-processing or multistage training which become less practical and do not
scale very well for large datasets or architectures. Our method constructs a
joint training objective that penalizes the self-information of network
parameters in a reparameterized latent space to encourage small model size
while also introducing priors to increase structured sparsity in the parameter
space to reduce computation. We achieve up to 50% smaller model size and 98%
model sparsity on ResNet-20 while retaining the same accuracy on the CIFAR-10
dataset as well as 35% smaller model size and 42% structured sparsity on
ResNet-50 trained on ImageNet, when compared to existing state-of-the-art model
compression methods. Code is available at
https://github.com/Sharath-girish/LilNetX.
Related papers
- Dynamic Pre-training: Towards Efficient and Scalable All-in-One Image Restoration [100.54419875604721]
All-in-one image restoration tackles different types of degradations with a unified model instead of having task-specific, non-generic models for each degradation.
We propose DyNet, a dynamic family of networks designed in an encoder-decoder style for all-in-one image restoration tasks.
Our DyNet can seamlessly switch between its bulkier and lightweight variants, thereby offering flexibility for efficient model deployment.
arXiv Detail & Related papers (2024-04-02T17:58:49Z) - Learning to Generate Parameters of ConvNets for Unseen Image Data [36.68392191824203]
ConvNets depend heavily on large amounts of image data and resort to an iterative optimization algorithm to learn network parameters.
We propose a new training paradigm and formulate the parameter learning of ConvNets into a prediction task.
We show that our proposed method achieves good efficacy for unseen image datasets on two kinds of settings.
arXiv Detail & Related papers (2023-10-18T10:26:18Z) - Compact Multi-level Sparse Neural Networks with Input Independent
Dynamic Rerouting [33.35713740886292]
Sparse deep neural networks can substantially reduce the complexity and memory consumption of the models.
Facing the real-life challenges, we propose to train a sparse model that supports multiple sparse levels.
In this way, one can dynamically select the appropriate sparsity level during inference, while the storage cost is capped by the least sparse sub-model.
arXiv Detail & Related papers (2021-12-21T01:35:51Z) - Efficient deep learning models for land cover image classification [0.29748898344267777]
This work experiments with the BigEarthNet dataset for land use land cover (LULC) image classification.
We benchmark different state-of-the-art models, including Convolution Neural Networks, Multi-Layer Perceptrons, Visual Transformers, EfficientNets and Wide Residual Networks (WRN)
Our proposed lightweight model has an order of magnitude less trainable parameters, achieves 4.5% higher averaged f-score classification accuracy for all 19 LULC classes and is trained two times faster with respect to a ResNet50 state-of-the-art model that we use as a baseline.
arXiv Detail & Related papers (2021-11-18T00:03:14Z) - Network Augmentation for Tiny Deep Learning [73.57192520534585]
We introduce Network Augmentation (NetAug), a new training method for improving the performance of tiny neural networks.
We demonstrate the effectiveness of NetAug on image classification and object detection.
arXiv Detail & Related papers (2021-10-17T18:48:41Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - DisCo: Remedy Self-supervised Learning on Lightweight Models with
Distilled Contrastive Learning [94.89221799550593]
Self-supervised representation learning (SSL) has received widespread attention from the community.
Recent research argue that its performance will suffer a cliff fall when the model size decreases.
We propose a simple yet effective Distilled Contrastive Learning (DisCo) to ease the issue by a large margin.
arXiv Detail & Related papers (2021-04-19T08:22:52Z) - Learnable Expansion-and-Compression Network for Few-shot
Class-Incremental Learning [87.94561000910707]
We propose a learnable expansion-and-compression network (LEC-Net) to solve catastrophic forgetting and model over-fitting problems.
LEC-Net enlarges the representation capacity of features, alleviating feature drift of old network from the perspective of model regularization.
Experiments on the CUB/CIFAR-100 datasets show that LEC-Net improves the baseline by 57% while outperforms the state-of-the-art by 56%.
arXiv Detail & Related papers (2021-04-06T04:34:21Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Two compact networks, called Layer-Net (L-Net) and Channel-Net (C-Net), predict on a per-instance basis which layers or filters/channels are redundant and therefore should be skipped.
On the CIFAR-10 dataset, LC-Net results in up to 11.9$times$ fewer floating-point operations (FLOPs) and up to 3.3% higher accuracy compared to other dynamic inference methods.
On the ImageNet dataset, LC-Net achieves up to 1.4$times$ fewer FLOPs and up to 4.6% higher Top-1 accuracy than the other methods.
arXiv Detail & Related papers (2020-07-29T23:17:48Z) - Principal Component Networks: Parameter Reduction Early in Training [10.14522349959932]
We show how to find small networks that exhibit the same performance as their over parameterized counterparts.
We use PCA to find a basis of high variance for layer inputs and represent layer weights using these directions.
We also show that ResNet-20 PCNs outperform deep ResNet-110 networks while training faster.
arXiv Detail & Related papers (2020-06-23T21:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.