Categorical Distributions of Maximum Entropy under Marginal Constraints
- URL: http://arxiv.org/abs/2204.03406v2
- Date: Wed, 15 Nov 2023 21:57:41 GMT
- Title: Categorical Distributions of Maximum Entropy under Marginal Constraints
- Authors: Orestis Loukas, Ho Ryun Chung
- Abstract summary: estimation of categorical distributions under marginal constraints is key for many machine-learning and data-driven approaches.
We provide a parameter-agnostic theoretical framework that ensures that a categorical distribution of Maximum Entropy under marginal constraints always exists.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The estimation of categorical distributions under marginal constraints
summarizing some sample from a population in the most-generalizable way is key
for many machine-learning and data-driven approaches. We provide a
parameter-agnostic theoretical framework that enables this task ensuring (i)
that a categorical distribution of Maximum Entropy under marginal constraints
always exists and (ii) that it is unique. The procedure of iterative
proportional fitting (IPF) naturally estimates that distribution from any
consistent set of marginal constraints directly in the space of probabilities,
thus deductively identifying a least-biased characterization of the population.
The theoretical framework together with IPF leads to a holistic workflow that
enables modeling any class of categorical distributions solely using the
phenomenological information provided.
Related papers
- Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
We introduce a novel generative model for the representation of joint probability distributions of a possibly large number of discrete random variables.
The embedding of the flow via the Segre map in the meta-simplex of all discrete joint distributions ensures that any target distribution can be represented in principle.
Our approach has strong motivation from first principles of modeling coupled discrete variables.
arXiv Detail & Related papers (2024-06-06T21:58:33Z) - Domain Generalization with Small Data [27.040070085669086]
We learn a domain-invariant representation based on the probabilistic framework by mapping each data point into probabilistic embeddings.
Our proposed method can marriage the measurement on the textitdistribution over distributions (i.e., the global perspective alignment) and the distribution-based contrastive semantic alignment.
arXiv Detail & Related papers (2024-02-09T02:59:08Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Constrained Reweighting of Distributions: an Optimal Transport Approach [8.461214317999321]
We introduce a nonparametrically imbued distributional constraints on the weights, and develop a general framework leveraging the maximum entropy principle and tools from optimal transport.
The framework is demonstrated in the context of three disparate applications: portfolio allocation, semi-parametric inference for complex surveys, and ensuring algorithmic fairness in machine learning algorithms.
arXiv Detail & Related papers (2023-10-19T03:54:31Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Probabilistic learning inference of boundary value problem with
uncertainties based on Kullback-Leibler divergence under implicit constraints [0.0]
We present a general methodology of a probabilistic learning inference that allows for estimating a posterior probability model for a boundary value problem from a prior probability model.
A statistical surrogate model of the implicit mapping, which represents the constraints, is introduced.
In a second part, an application is presented to illustrate the proposed theory and is also, as such, a contribution to the three-dimensional homogenization of heterogeneous linear elastic media.
arXiv Detail & Related papers (2022-02-10T16:00:10Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches.
We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework.
arXiv Detail & Related papers (2022-02-09T19:01:33Z) - Achieving Efficiency in Black Box Simulation of Distribution Tails with
Self-structuring Importance Samplers [1.6114012813668934]
The paper presents a novel Importance Sampling (IS) scheme for estimating distribution of performance measures modeled with a rich set of tools such as linear programs, integer linear programs, piecewise linear/quadratic objectives, feature maps specified with deep neural networks, etc.
arXiv Detail & Related papers (2021-02-14T03:37:22Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
Phenomenon of separability was revealed and used in machine learning to correct errors of Artificial Intelligence (AI) systems and analyze AI instabilities.
Errors or clusters of errors can be separated from the rest of the data.
The ability to correct an AI system also opens up the possibility of an attack on it, and the high dimensionality induces vulnerabilities caused by the same separability.
arXiv Detail & Related papers (2020-10-11T13:12:41Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.