On Improving Cross-dataset Generalization of Deepfake Detectors
- URL: http://arxiv.org/abs/2204.04285v1
- Date: Fri, 8 Apr 2022 20:34:53 GMT
- Title: On Improving Cross-dataset Generalization of Deepfake Detectors
- Authors: Aakash Varma Nadimpalli and Ajita Rattani
- Abstract summary: Facial manipulation by deep fake has caused major security risks and raised severe societal concerns.
We formulate deep fake detection as a hybrid combination of supervised and reinforcement learning (RL) to improve its cross-dataset generalization performance.
We demonstrate the superiority of our method over existing published research in cross-dataset generalization of deep fake detectors, thus obtaining state-of-the-art performance.
- Score: 1.0152838128195467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial manipulation by deep fake has caused major security risks and raised
severe societal concerns. As a countermeasure, a number of deep fake detection
methods have been proposed recently. Most of them model deep fake detection as
a binary classification problem using a backbone convolutional neural network
(CNN) architecture pretrained for the task. These CNN-based methods have
demonstrated very high efficacy in deep fake detection with the Area under the
Curve (AUC) as high as 0.99. However, the performance of these methods degrades
significantly when evaluated across datasets. In this paper, we formulate deep
fake detection as a hybrid combination of supervised and reinforcement learning
(RL) to improve its cross-dataset generalization performance. The proposed
method chooses the top-k augmentations for each test sample by an RL agent in
an image-specific manner. The classification scores, obtained using CNN, of all
the augmentations of each test image are averaged together for final real or
fake classification. Through extensive experimental validation, we demonstrate
the superiority of our method over existing published research in cross-dataset
generalization of deep fake detectors, thus obtaining state-of-the-art
performance.
Related papers
- Fake It till You Make It: Curricular Dynamic Forgery Augmentations towards General Deepfake Detection [15.857961926916465]
We present a novel general deepfake detection method, called textbfCurricular textbfDynamic textbfForgery textbfAugmentation (CDFA)
CDFA jointly trains a deepfake detector with a forgery augmentation policy network.
We show that CDFA can significantly improve both cross-datasets and cross-manipulations performances of various naive deepfake detectors.
arXiv Detail & Related papers (2024-09-22T13:51:22Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Towards More General Video-based Deepfake Detection through Facial Feature Guided Adaptation for Foundation Model [15.61920157541529]
We propose a novel Deepfake detection approach by adapting the Foundation Models with rich information encoded inside.
Inspired by the recent advances of parameter efficient fine-tuning, we propose a novel side-network-based decoder.
Our approach exhibits superior effectiveness in identifying unseen Deepfake samples, achieving notable performance improvement.
arXiv Detail & Related papers (2024-04-08T14:58:52Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
Deep learning has led to the generation of very realistic fake content, also known as deepfakes.
Most of the current deepfake detection methods are deemed as a binary classification problem in distinguishing authentic images or videos from fake ones using two-class convolutional neural networks (CNNs)
This paper thoroughly evaluate the efficacy of deep face recognition in identifying deepfakes, using different loss functions and deepfake generation techniques.
arXiv Detail & Related papers (2021-10-04T18:02:56Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.