A Multilingual Perspective Towards the Evaluation of Attribution Methods
in Natural Language Inference
- URL: http://arxiv.org/abs/2204.05428v2
- Date: Mon, 5 Jun 2023 00:14:19 GMT
- Title: A Multilingual Perspective Towards the Evaluation of Attribution Methods
in Natural Language Inference
- Authors: Kerem Zaman, Yonatan Belinkov
- Abstract summary: We present a multilingual approach for evaluating attribution methods for the Natural Language Inference (NLI) task in terms of faithfulness and plausibility.
First, we introduce a novel cross-lingual strategy to measure faithfulness based on word alignments, which eliminates the drawbacks of erasure-based evaluations.
We then perform a comprehensive evaluation of attribution methods, considering different output mechanisms and aggregation methods.
- Score: 28.949004915740776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most evaluations of attribution methods focus on the English language. In
this work, we present a multilingual approach for evaluating attribution
methods for the Natural Language Inference (NLI) task in terms of faithfulness
and plausibility. First, we introduce a novel cross-lingual strategy to measure
faithfulness based on word alignments, which eliminates the drawbacks of
erasure-based evaluations.We then perform a comprehensive evaluation of
attribution methods, considering different output mechanisms and aggregation
methods. Finally, we augment the XNLI dataset with highlight-based
explanations, providing a multilingual NLI dataset with highlights, to support
future exNLP studies. Our results show that attribution methods performing best
for plausibility and faithfulness are different.
Related papers
- Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
Whisper, one of the most advanced ASR models, handles 99 languages effectively.
However, Whisper struggles with unseen languages, those not included in its pre-training.
We propose methods that exploit these relationships to enhance ASR performance on unseen languages.
arXiv Detail & Related papers (2024-12-21T04:05:43Z) - Align, Generate, Learn: A Novel Closed-Loop Framework for Cross-Lingual In-Context Learning [0.0]
Cross-lingual in-context learning (XICL) has emerged as a transformative paradigm for leveraging large language models (LLMs) to tackle multilingual tasks.
We propose a novel self-supervised framework that harnesses the generative capabilities of LLMs to internally select and utilize task-relevant examples.
arXiv Detail & Related papers (2024-12-12T05:36:51Z) - Distilling Monolingual and Crosslingual Word-in-Context Representations [18.87665111304974]
We propose a method that distils representations of word meaning in context from a pre-trained language model in both monolingual and crosslingual settings.
Our method does not require human-annotated corpora nor updates of the parameters of the pre-trained model.
Our method learns to combine the outputs of different hidden layers of the pre-trained model using self-attention.
arXiv Detail & Related papers (2024-09-13T11:10:16Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
Natural Language Inference (NLI) is a growingly essential task in natural language understanding.
Here we propose a multi-level supervised contrastive learning framework named MultiSCL for low-resource natural language inference.
arXiv Detail & Related papers (2022-05-31T05:54:18Z) - Unsupervised Alignment of Distributional Word Embeddings [0.0]
Cross-domain alignment play a key role in tasks ranging from machine translation to transfer learning.
We show that the proposed approach achieves good performance on the bilingual lexicon induction task across several language pairs.
arXiv Detail & Related papers (2022-03-09T16:39:06Z) - On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness,
and Semantic Evaluation [23.72825603188359]
We can improve the interpretability of explanations by allowing arbitrary text sequences as the explanation unit.
We propose a semantic-based evaluation metric that can better align with humans' judgment of explanations.
arXiv Detail & Related papers (2021-06-09T00:49:56Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
We propose a multilingual robustness evaluation platform for NLP tasks (TextFlint)
It incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis.
TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness.
arXiv Detail & Related papers (2021-03-21T17:20:38Z) - Unsupervised Cross-lingual Adaptation for Sequence Tagging and Beyond [58.80417796087894]
Cross-lingual adaptation with multilingual pre-trained language models (mPTLMs) mainly consists of two lines of works: zero-shot approach and translation-based approach.
We propose a novel framework to consolidate the zero-shot approach and the translation-based approach for better adaptation performance.
arXiv Detail & Related papers (2020-10-23T13:47:01Z) - Multilingual Chart-based Constituency Parse Extraction from Pre-trained
Language Models [21.2879567125422]
We propose a novel method for extracting complete (binary) parses from pre-trained language models.
By applying our method on multilingual PLMs, it becomes possible to induce non-trivial parses for sentences from nine languages.
arXiv Detail & Related papers (2020-04-08T05:42:26Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word representations.
Our approach significantly improves crosslingual sentence retrieval performance over all other approaches.
It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task.
arXiv Detail & Related papers (2019-12-28T16:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.