On the missing magnetic flux and topological effects of a screw
dislocation on a charged particle in an inhomogeneous magnetic field
- URL: http://arxiv.org/abs/2204.05743v1
- Date: Mon, 11 Apr 2022 11:20:20 GMT
- Title: On the missing magnetic flux and topological effects of a screw
dislocation on a charged particle in an inhomogeneous magnetic field
- Authors: K. Bakke and C. Furtado
- Abstract summary: We study the interaction of an electron/hole with inhomogeneous magnetic field in the presence of a screw dislocation.
An Aharonov-Bohm-type effect arises from the influence of the topological defect and the missing magnetic flux on the eigenvalues of energy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the interaction of an electron/hole with inhomogeneous magnetic
field in the presence of a screw dislocation. We consider the internal
structure of the defect, i.e., we consider the core that gives rise to a finite
size to the defect. In addition, we assume that this core determines a
forbidden region for the electron/hole. Then, we solve the Schr\"odinger
equation and show that an Aharonov-Bohm-type effect arises from the influence
of the topological defect and the missing magnetic flux on the eigenvalues of
energy.
Related papers
- Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Topological Effects on Non-Relativistic Eigenvalue Solutions Under
AB-Flux Field with Pseudoharmonic- and Mie-type Potentials [0.0]
We investigate the quantum dynamics of a Schr"odinger particle confined by the Aharonov-Bohm flux field.
We show that the eigenvalue solutions shift more due to the magnetic flux in addition to the topological defects.
arXiv Detail & Related papers (2022-10-04T04:56:43Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Interaction of the magnetic quadrupole moment of a non-relativistic
particle with an electric field in the background of screw dislocations with
a rotating frame [0.0]
We consider a moving particle with a magnetic quadrupole moment in an elastic medium in the presence of a screw dislocation.
We derive wave and energy eigenvalue functions by employing analytical methods for two interaction configurations.
Due to the topological defect in the medium, we observed a shift in the angular momentum quantum number which affects the energy eigenvalues and the wave function of the system.
arXiv Detail & Related papers (2021-06-08T20:20:30Z) - Electric quadrupole moment of a neutral non-relativistic particle in the
presence of screw dislocation [0.0]
We investigate the interaction between electric and magnetic fields with an electric quadrupole moment of a spinless particle moving in an elastic medium which has a topological defect (screw dislocation)
By considering this interaction, the Schr"odinger equation is exactly solved by using the analytical method.
arXiv Detail & Related papers (2021-03-01T17:56:52Z) - Effects of Topological Defect on the Energy Spectra and Thermo-magnetic
Properties of CO Diatomic Molecule [0.0]
Confinement effects of Aharonov-Bohm flux and magnetic fields with topological defect on CO diatomic molecule modeled by screened modified Kratzer potential is investigated.
We observe that the system tends to exhibit both a paramagnetic and diamagnetic behavior for weak and intense magnetic field respectively and some sort of saturation at large magnetic field.
arXiv Detail & Related papers (2021-02-19T10:21:16Z) - Aharonov-Casher and shielded Aharonov-Bohm effects with a quantum
electromagnetic field [0.0]
We use a covariant formalism capable of describing the electric and magnetic versions of the Aharonov-Bohm effect.
We show that the magnetic Aharonov-Bohm effect must be present even if the solenoid generating the magnetic field is shielded by a perfect conductor.
arXiv Detail & Related papers (2020-11-17T23:49:09Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.