De-IReps: Searching for improved Re-parameterizing Architecture based on
Differentiable Evolution Strategy
- URL: http://arxiv.org/abs/2204.06403v1
- Date: Wed, 13 Apr 2022 14:07:20 GMT
- Title: De-IReps: Searching for improved Re-parameterizing Architecture based on
Differentiable Evolution Strategy
- Authors: Xinyi Yu, Xiaowei Wang, Mingyang Zhang, Jintao Rong, Linlin Ou
- Abstract summary: We design a search space that covers almost all re- parameterization operations.
In this search space, multiple-path networks can be unconditionally re- parameterized into single-path networks.
We visualize the features of the searched architecture and give our explanation for the appearance of this architecture.
- Score: 5.495046508448319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural architecture search (NAS) has shown great
competitiveness in many fields and re-parameterization techniques have started
to appear in the field of architectural search. However, most edge devices do
not adapt well to networks, especially the multi-branch structure, which is
searched by NAS. Therefore, in this work we design a search space that covers
almost all re-parameterization operations. In this search space, multiple-path
networks can be unconditionally re-parameterized into single-path networks.
Thus, enhancing the usefulness of traditional nas. Meanwhile we summarize the
characteristics of the re-parameterization search space and propose a
differentiable evolutionary strategy (DES) to explore the re-parameterization
search space. We visualize the features of the searched architecture and give
our explanation for the appearance of this architecture. In this work, we can
achieve efficient search and find better network structures. Respectively, we
completed the architecture search on CIFAR-10 with the test accuracy of 96.64%
(IrepResNet-18) and 95.65% (IrepVGG-16) and on ImageNet with the test accuracy
of 77.92% (Irep-ResNet-50).
Related papers
- DASS: Differentiable Architecture Search for Sparse neural networks [0.5735035463793009]
We find that the architectures designed for dense networks by differentiable architecture search methods are ineffective when pruning mechanisms are applied to them.
In this paper, we propose a new method to search for sparsity-friendly neural architectures.
We do this by adding two new sparse operations to the search space and modifying the search objective.
arXiv Detail & Related papers (2022-07-14T14:53:50Z) - Search Space Adaptation for Differentiable Neural Architecture Search in
Image Classification [15.641353388251465]
Differentiable neural architecture search (NAS) has a great impact by reducing the search cost to the level of training a single network.
In this paper, we propose an adaptation scheme of the search space by introducing a search scope.
The effectiveness of proposed method is demonstrated with ProxylessNAS for the image classification task.
arXiv Detail & Related papers (2022-06-05T05:27:12Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - D-DARTS: Distributed Differentiable Architecture Search [75.12821786565318]
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods.
We propose D-DARTS, a novel solution that addresses this problem by nesting several neural networks at cell-level.
arXiv Detail & Related papers (2021-08-20T09:07:01Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - Making Differentiable Architecture Search less local [9.869449181400466]
Differentiable neural architecture search (DARTS) is a promising NAS approach that dramatically increases search efficiency.
It has been shown to suffer from performance collapse, where the search often leads to detrimental architectures.
We develop a more global optimisation scheme that is able to better explore the space without changing the DARTS problem formulation.
arXiv Detail & Related papers (2021-04-21T10:36:43Z) - ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse
Coding [86.40042104698792]
We formulate neural architecture search as a sparse coding problem.
In experiments, our two-stage method on CIFAR-10 requires only 0.05 GPU-day for search.
Our one-stage method produces state-of-the-art performances on both CIFAR-10 and ImageNet at the cost of only evaluation time.
arXiv Detail & Related papers (2020-10-13T04:34:24Z) - Multi-Objective Neural Architecture Search Based on Diverse Structures
and Adaptive Recommendation [4.595675084986132]
The search space of neural architecture search (NAS) for convolutional neural network (CNN) is huge.
We propose MoARR algorithm, which utilizes the existing research results and historical information to quickly find architectures that are both lightweight and accurate.
Experimental results show that our MoARR can achieve a powerful and lightweight model (with 1.9% error rate and 2.3M parameters) on CIFAR-10 in 6 GPU hours.
arXiv Detail & Related papers (2020-07-06T13:42:33Z) - Cyclic Differentiable Architecture Search [99.12381460261841]
Differentiable ARchiTecture Search, i.e., DARTS, has drawn great attention in neural architecture search.
We propose new joint objectives and a novel Cyclic Differentiable ARchiTecture Search framework, dubbed CDARTS.
In the DARTS search space, we achieve 97.52% top-1 accuracy on CIFAR10 and 76.3% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-06-18T17:55:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.