$T_2$-limited dc Quantum Magnetometry via Flux Modulation
- URL: http://arxiv.org/abs/2204.07343v1
- Date: Fri, 15 Apr 2022 06:43:20 GMT
- Title: $T_2$-limited dc Quantum Magnetometry via Flux Modulation
- Authors: Yijin Xie, Caijin Xie, Yunbin Zhu, Ke Jing, Yu Tong, Xi Qin, Haosen
Guan, Chang-Kui Duan, Ya Wang, Xing Rong, Jiangfeng Du
- Abstract summary: High-sensitivity magnetometry is of critical importance to the fields of biomagnetism and geomagnetism.
Here, we demonstrate a $T$-limited quantum magnetometry based on the nitrogen-vacancy centers in diamond.
The sensitivity of the dc magnetometry of 32 $rm pT/Hz1/2$ has been achieved, overwhelmingly improved by 100 folds over the Ramsey-type method.
- Score: 9.185105581888457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-sensitivity magnetometry is of critical importance to the fields of
biomagnetism and geomagnetism. However, the magnetometry for the low-frequency
signal detection meets the challenge of sensitivity improvement, due to
multiple types of low-frequency noise sources. In particular, for the
solid-state spin quantum magnetometry, the sensitivity of low frequency
magnetic field has been limited by short $T_2^*$. Here, we demonstrate a
$T_2$-limited dc quantum magnetometry based on the nitrogen-vacancy centers in
diamond. The magnetometry, combining the flux modulation and the spin-echo
protocol, promotes the sensitivity from being limited by $T_2^*$ to $T_2$ of
orders of magnitude longer. The sensitivity of the dc magnetometry of 32 $\rm
pT/Hz^{1/2}$ has been achieved, overwhelmingly improved by 100 folds over the
Ramsey-type method result of 4.6 $\rm nT/Hz^{1/2}$. Further enhancement of the
sensitivity have been systematically analyzed, although challenging but plenty
of room is achievable. Our result sheds light on realization of room
temperature dc quantum magnetomerty with femtotesla-sensitivity in the future.
Related papers
- Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Ferrimagnetic Oscillator Magnetometer [0.0]
The device exhibits a fixed, calibration-free response governed by the electronmagnetic gyro ratio.
The device achieves a minimum sensitivity of 100 fT/$sqrttextHz$ to AC magnetic fields of unknown phase.
arXiv Detail & Related papers (2023-05-31T15:21:57Z) - Sensitive AC and DC Magnetometry with Nitrogen-Vacancy Center Ensembles
in Diamond [0.0]
We demonstrate the most sensitive nitrogen-vacancy-based bulk magnetometer reported to date.
The device does not include a flux concentrator, preserving the fixed response of the NVs to magnetic field.
arXiv Detail & Related papers (2023-05-10T16:02:58Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Magnetic Field Independent SERF Magnetometer [0.0]
We show that atoms with nuclear spin $I=1/2$ can operate in the Spin-Exchange Relaxation Free regime but for any magnitude of the magnetic field.
We analyze the performance of a dual-specie potassium and atomic hydrogen magnetometer, and project a fundamental sensitivity of about $10.
arXiv Detail & Related papers (2022-09-27T00:36:02Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Probabilistic magnetometry with two-spin system in diamond [4.965114253725413]
We show that the hyperfine coupling between the Nitrogen-Vacancy and a nearby Carbon-13 can be used to set a post-selection protocol.
We found that for an isotopically purified sample the detection of weak magnetic fields in the $mu$T range can be achieved with a sensitivity of few nTHz$-1/2$ at cryogenic temperature ($4$ K)
arXiv Detail & Related papers (2020-03-26T14:06:46Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.