Text Revision by On-the-Fly Representation Optimization
- URL: http://arxiv.org/abs/2204.07359v1
- Date: Fri, 15 Apr 2022 07:38:08 GMT
- Title: Text Revision by On-the-Fly Representation Optimization
- Authors: Jingjing Li, Zichao Li, Tao Ge, Irwin King, Michael R. Lyu
- Abstract summary: Current state-of-the-art methods formulate these tasks as sequence-to-sequence learning problems.
We present an iterative in-place editing approach for text revision, which requires no parallel data.
It achieves competitive and even better performance than state-of-the-art supervised methods on text simplification.
- Score: 76.11035270753757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text revision refers to a family of natural language generation tasks, where
the source and target sequences share moderate resemblance in surface form but
differentiate in attributes, such as text formality and simplicity. Current
state-of-the-art methods formulate these tasks as sequence-to-sequence learning
problems, which rely on large-scale parallel training corpus. In this paper, we
present an iterative in-place editing approach for text revision, which
requires no parallel data. In this approach, we simply fine-tune a pre-trained
Transformer with masked language modeling and attribute classification. During
inference, the editing at each iteration is realized by two-step span
replacement. At the first step, the distributed representation of the text
optimizes on the fly towards an attribute function. At the second step, a text
span is masked and another new one is proposed conditioned on the optimized
representation. The empirical experiments on two typical and important text
revision tasks, text formalization and text simplification, show the
effectiveness of our approach. It achieves competitive and even better
performance than state-of-the-art supervised methods on text simplification,
and gains better performance than strong unsupervised methods on text
formalization \footnote{Code and model are available at
\url{https://github.com/jingjingli01/OREO}}.
Related papers
- Contextualized Diffusion Models for Text-Guided Image and Video Generation [67.69171154637172]
Conditional diffusion models have exhibited superior performance in high-fidelity text-guided visual generation and editing.
We propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample.
We generalize our model to both DDPMs and DDIMs with theoretical derivations, and demonstrate the effectiveness of our model in evaluations with two challenging tasks: text-to-image generation, and text-to-video editing.
arXiv Detail & Related papers (2024-02-26T15:01:16Z) - Prefix-Tuning Based Unsupervised Text Style Transfer [29.86587278794342]
Unsupervised text style transfer aims at training a generative model that can alter the style of the input sentence while preserving its content.
In this paper, we employ powerful pre-trained large language models and present a new prefix-tuning-based method for unsupervised text style transfer.
arXiv Detail & Related papers (2023-10-23T06:13:08Z) - Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - LRANet: Towards Accurate and Efficient Scene Text Detection with
Low-Rank Approximation Network [63.554061288184165]
We propose a novel parameterized text shape method based on low-rank approximation.
By exploring the shape correlation among different text contours, our method achieves consistency, compactness, simplicity, and robustness in shape representation.
We implement an accurate and efficient arbitrary-shaped text detector named LRANet.
arXiv Detail & Related papers (2023-06-27T02:03:46Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Learning from Bootstrapping and Stepwise Reinforcement Reward: A
Semi-Supervised Framework for Text Style Transfer [30.622772801446132]
We propose a semi-supervised framework for text style transfer.
First, the learning process is bootstrapped with supervision guided by automatically constructed pseudo-parallel pairs.
Then the model learns from unlabeled data via reinforcement rewards.
arXiv Detail & Related papers (2022-05-19T05:18:06Z) - ABCNet v2: Adaptive Bezier-Curve Network for Real-time End-to-end Text
Spotting [108.93803186429017]
End-to-end text-spotting aims to integrate detection and recognition in a unified framework.
Here, we tackle end-to-end text spotting by presenting Adaptive Bezier Curve Network v2 (ABCNet v2)
Our main contributions are four-fold: 1) For the first time, we adaptively fit arbitrarily-shaped text by a parameterized Bezier curve, which, compared with segmentation-based methods, can not only provide structured output but also controllable representation.
Comprehensive experiments conducted on various bilingual (English and Chinese) benchmark datasets demonstrate that ABCNet v2 can achieve state-of-the
arXiv Detail & Related papers (2021-05-08T07:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.