Design of optimization tools for quantum information theory
- URL: http://arxiv.org/abs/2204.07625v1
- Date: Fri, 15 Apr 2022 19:37:21 GMT
- Title: Design of optimization tools for quantum information theory
- Authors: Daniel Uzcategui Contreras
- Abstract summary: We introduce an algorithm for quantum estate estimation and a technique for certifying quantum non-locality.
To study the quantum marginal problem, we develop an algorithm, which takes as inputs a set of quantum marginals and eigenvalues, and outputs a density matrix.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this thesis, we present optimization tools for different problems in
quantum information theory. First, we introduce an algorithm for quantum estate
estimation. The algorithm consists of orthogonal projections on intersecting
hyperplanes, which are determined by the probability distributions and the
measurement operators. We show its performance, in both runtime and fidelity,
considering realistic errors. Second, we present a technique for certifying
quantum non-locality. Given a set of bipartite measurement frequencies, this
technique finds a Bell inequality that maximizes the gap between the local
hidden variable and the quantum value of a Bell inequality. Lastly, to study
the quantum marginal problem, we introduce an operator and develop an
algorithm, which takes as inputs a set of quantum marginals and eigenvalues,
and outputs a density matrix, if exists, compatible with the prescribed data.
Related papers
- Addressing the Readout Problem in Quantum Differential Equation Algorithms with Quantum Scientific Machine Learning [14.379311972506791]
We show that the readout of exact quantum states poses a bottleneck due to the complexity of tomography.
Treating outputs of quantum differential equation solvers as quantum data, we demonstrate that low-dimensional output can be extracted.
We apply this quantum scientific machine learning approach to classify solutions for shock wave detection and turbulence modeling.
arXiv Detail & Related papers (2024-11-21T16:09:08Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
We show the largest-to-date execution of a quantum optimization algorithm that preserves constraints on quantum hardware.
We execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159.
We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.
arXiv Detail & Related papers (2022-06-13T16:21:04Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Limitations of variational quantum algorithms: a quantum optimal
transport approach [11.202435939275675]
We obtain extremely tight bounds for standard NISQ proposals in both the noisy and noiseless regimes.
The bounds limit the performance of both circuit model algorithms, such as QAOA, and also continuous-time algorithms, such as quantum annealing.
arXiv Detail & Related papers (2022-04-07T13:58:44Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Stochastic emulation of quantum algorithms [0.0]
We introduce higher-order partial derivatives of a probability distribution of particle positions as a new object that shares basic properties of quantum mechanical states needed for a quantum algorithm.
We prove that the propagation via the map built from those universal maps reproduces up to a prefactor exactly the evolution of the quantum mechanical state.
We implement several well-known quantum algorithms, analyse the scaling of the needed number of realizations with the number of qubits, and highlight the role of destructive interference for the cost of emulation.
arXiv Detail & Related papers (2021-09-16T07:54:31Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.