A generative neural network model for random dot product graphs
- URL: http://arxiv.org/abs/2204.07634v1
- Date: Fri, 15 Apr 2022 19:59:22 GMT
- Title: A generative neural network model for random dot product graphs
- Authors: Vittorio Loprinzo and Laurent Younes
- Abstract summary: GraphMoE is a novel approach to learning generative models for random graphs.
The neural network is trained to match the distribution of a class of random graphs by way of a moment estimator.
- Score: 1.1421942894219896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present GraphMoE, a novel neural network-based approach to learning
generative models for random graphs. The neural network is trained to match the
distribution of a class of random graphs by way of a moment estimator. The
features used for training are graphlets, subgraph counts of small order. The
neural network accepts random noise as input and outputs vector representations
for nodes in the graph. Random graphs are then realized by applying a kernel to
the representations. Graphs produced this way are demonstrated to be able to
imitate data from chemistry, medicine, and social networks. The produced graphs
are similar enough to the target data to be able to fool discriminator neural
networks otherwise capable of separating classes of random graphs.
Related papers
- Revisiting Random Walks for Learning on Graphs [15.64437981617624]
We revisit a simple idea for machine learning on graphs, where a random walk on a graph produces a machine-readable record.
We refer to these machines as random walk neural networks.
We show that we can design them to be isomorphism invariant while capable of universal approximation of graph functions in probability.
arXiv Detail & Related papers (2024-07-01T11:59:59Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - Customized Graph Neural Networks [38.30640892828196]
Graph Neural Networks (GNNs) have greatly advanced the task of graph classification.
We propose a novel customized graph neural network framework, i.e., Customized-GNN.
The proposed framework is very general that can be applied to numerous existing graph neural network models.
arXiv Detail & Related papers (2020-05-22T05:22:24Z) - Convolutional Kernel Networks for Graph-Structured Data [37.13712126432493]
We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods.
Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps.
Our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks.
arXiv Detail & Related papers (2020-03-11T09:44:03Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
We propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling.
In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph.
For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.
arXiv Detail & Related papers (2020-03-02T03:06:14Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
We perform a massive evaluation of neural networks with architectures corresponding to random graphs of various types.
We find that none of the classical numerical graph invariants by itself allows to single out the best networks.
We also find that networks with primarily short-range connections perform better than networks which allow for many long-range connections.
arXiv Detail & Related papers (2020-02-19T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.