TVShowGuess: Character Comprehension in Stories as Speaker Guessing
- URL: http://arxiv.org/abs/2204.07721v1
- Date: Sat, 16 Apr 2022 05:15:04 GMT
- Title: TVShowGuess: Character Comprehension in Stories as Speaker Guessing
- Authors: Yisi Sang, Xiangyang Mou, Mo Yu, Shunyu Yao, Jing Li, Jeffrey Stanton
- Abstract summary: We propose a new task for assessing machines' skills of understanding fictional characters in narrative stories.
The task, TVShowGuess, builds on the scripts of TV series and takes the form of guessing the anonymous main characters based on the backgrounds of the scenes and the dialogues.
Our human study supports that this form of task covers comprehension of multiple types of character persona, including understanding characters' personalities, facts and memories of personal experience.
- Score: 23.21452223968301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new task for assessing machines' skills of understanding
fictional characters in narrative stories. The task, TVShowGuess, builds on the
scripts of TV series and takes the form of guessing the anonymous main
characters based on the backgrounds of the scenes and the dialogues. Our human
study supports that this form of task covers comprehension of multiple types of
character persona, including understanding characters' personalities, facts and
memories of personal experience, which are well aligned with the psychological
and literary theories about the theory of mind (ToM) of human beings on
understanding fictional characters during reading. We further propose new model
architectures to support the contextualized encoding of long scene texts.
Experiments show that our proposed approaches significantly outperform
baselines, yet still largely lag behind the (nearly perfect) human performance.
Our work serves as a first step toward the goal of narrative character
comprehension.
Related papers
- BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
We define two tasks: character description, which generates a brief factual profile, and character analysis, which offers an in-depth interpretation.
We introduce the BookWorm dataset, pairing books from the Gutenberg Project with human-written descriptions and analyses.
Our findings show that retrieval-based approaches outperform hierarchical ones in both tasks.
arXiv Detail & Related papers (2024-10-14T10:55:58Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
This paper investigates the capability of LLMs in storytelling, focusing on narrative development and plot progression.
We introduce a novel computational framework to analyze narratives through three discourse-level aspects.
We show that explicit integration of discourse features can enhance storytelling, as is demonstrated by over 40% improvement in neural storytelling.
arXiv Detail & Related papers (2024-07-18T08:02:49Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
Large language models (LLMs) can be used to serve as agents to simulate human behaviors.
We introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc.
arXiv Detail & Related papers (2023-10-16T07:58:56Z) - Personality Understanding of Fictional Characters during Book Reading [81.68515671674301]
We present the first labeled dataset PersoNet for this problem.
Our novel annotation strategy involves annotating user notes from online reading apps as a proxy for the original books.
Experiments and human studies indicate that our dataset construction is both efficient and accurate.
arXiv Detail & Related papers (2023-05-17T12:19:11Z) - M-SENSE: Modeling Narrative Structure in Short Personal Narratives Using
Protagonist's Mental Representations [14.64546899992196]
We propose the task of automatically detecting prominent elements of the narrative structure by analyzing the role of characters' inferred mental state.
We introduce a STORIES dataset of short personal narratives containing manual annotations of key elements of narrative structure, specifically climax and resolution.
Our model is able to achieve significant improvements in the task of identifying climax and resolution.
arXiv Detail & Related papers (2023-02-18T20:48:02Z) - Few-Shot Character Understanding in Movies as an Assessment to
Meta-Learning of Theory-of-Mind [47.13015852330866]
Humans can quickly understand new fictional characters with a few observations, mainly by drawing analogies to fictional and real people they already know.
This reflects the few-shot and meta-learning essence of humans' inference of characters' mental states, i.e., theory-of-mind (ToM)
We fill this gap with a novel NLP dataset, ToM-in-AMC, the first assessment of machines' meta-learning of ToM in a realistic narrative understanding scenario.
arXiv Detail & Related papers (2022-11-09T05:06:12Z) - MBTI Personality Prediction for Fictional Characters Using Movie Scripts [34.24896499537589]
We construct a benchmark, Story2Personality, to predict a movie character's MBTI or Big 5 personality types.
Experiments show that our task is challenging for the existing text classification models.
We propose a multi-view model for personality prediction using both verbal and non-verbal descriptions.
arXiv Detail & Related papers (2022-10-20T03:41:07Z) - "Let Your Characters Tell Their Story": A Dataset for Character-Centric
Narrative Understanding [31.803481510886378]
We present LiSCU -- a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them.
We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation.
Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.
arXiv Detail & Related papers (2021-09-12T06:12:55Z) - Learning Similarity between Movie Characters and Its Potential
Implications on Understanding Human Experiences [7.1282254016123305]
We propose a new task to capture this richness based on an unlikely setting: movie characters.
We sought to capture theme-level similarities between movie characters that were community-curated into 20,000 themes.
arXiv Detail & Related papers (2020-10-23T06:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.