DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup
- URL: http://arxiv.org/abs/2204.07742v1
- Date: Sat, 16 Apr 2022 08:08:29 GMT
- Title: DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup
- Authors: Bingzhe Wu, Zhipeng Liang, Yuxuan Han, Yatao Bian, Peilin Zhao,
Junzhou Huang
- Abstract summary: federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
- Score: 58.894901088797376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, federated learning has emerged as a promising approach for training
a global model using data from multiple organizations without leaking their raw
data. Nevertheless, directly applying federated learning to real-world tasks
faces two challenges: (1) heterogeneity in the data among different
organizations; and (2) data noises inside individual organizations.
In this paper, we propose a general framework to solve the above two
challenges simultaneously. Specifically, we propose using distributionally
robust optimization to mitigate the negative effects caused by data
heterogeneity paradigm to sample clients based on a learnable distribution at
each iteration. Additionally, we observe that this optimization paradigm is
easily affected by data noises inside local clients, which has a significant
performance degradation in terms of global model prediction accuracy. To solve
this problem, we propose to incorporate mixup techniques into the local
training process of federated learning. We further provide comprehensive
theoretical analysis including robustness analysis, convergence analysis, and
generalization ability. Furthermore, we conduct empirical studies across
different drug discovery tasks, such as ADMET property prediction and
drug-target affinity prediction.
Related papers
- Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
In open-world scenarios, global models may struggle to predict well on entirely new domain data captured by certain media.
Existing methods still rely on strong statistical correlations between samples and labels to address this issue.
We introduce FedCD, an overall optimization framework at both the local and global levels.
arXiv Detail & Related papers (2024-07-27T05:06:31Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Distributed Personalized Empirical Risk Minimization [19.087524494290676]
This paper advocates a new paradigm Personalized Empirical Risk Minimization (PERM) to facilitate learning from heterogeneous data sources.
We propose a distributed algorithm that replaces the standard model averaging with model shuffling to simultaneously optimize PERM objectives for all devices.
arXiv Detail & Related papers (2023-10-26T20:07:33Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - FedGen: Generalizable Federated Learning for Sequential Data [8.784435748969806]
In many real-world distributed settings, spurious correlations exist due to biases and data sampling issues.
We present a generalizable federated learning framework called FedGen, which allows clients to identify and distinguish between spurious and invariant features.
We show that FedGen results in models that achieve significantly better generalization and can outperform the accuracy of current federated learning approaches by over 24%.
arXiv Detail & Related papers (2022-11-03T15:48:14Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.