UTNLP at SemEval-2022 Task 6: A Comparative Analysis of Sarcasm
Detection using generative-based and mutation-based data augmentation
- URL: http://arxiv.org/abs/2204.08198v1
- Date: Mon, 18 Apr 2022 07:25:27 GMT
- Title: UTNLP at SemEval-2022 Task 6: A Comparative Analysis of Sarcasm
Detection using generative-based and mutation-based data augmentation
- Authors: Amirhossein Abaskohi, Arash Rasouli, Tanin Zeraati, Behnam Bahrak
- Abstract summary: Sarcasm is a term that refers to the use of words to mock, irritate, or amuse someone.
The metaphorical and creative nature of sarcasm presents a significant difficulty for sentiment analysis systems based on affective computing.
We put different models, and data augmentation approaches to the test and report on which one works best.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sarcasm is a term that refers to the use of words to mock, irritate, or amuse
someone. It is commonly used on social media. The metaphorical and creative
nature of sarcasm presents a significant difficulty for sentiment analysis
systems based on affective computing. The methodology and results of our team,
UTNLP, in the SemEval-2022 shared task 6 on sarcasm detection are presented in
this paper. We put different models, and data augmentation approaches to the
test and report on which one works best. The tests begin with traditional
machine learning models and progress to transformer-based and attention-based
models. We employed data augmentation based on data mutation and data
generation. Using RoBERTa and mutation-based data augmentation, our best
approach achieved an F1-sarcastic of 0.38 in the competition's evaluation
phase. After the competition, we fixed our model's flaws and achieved an
F1-sarcastic of 0.414.
Related papers
- Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
We create a physics-based synthetic image and data generator, resulting in a machine learning model that achieves comparable precision (0.86), recall (0.63), F1 scores (0.71), and engineering property predictions (R2=0.82)
Our study demonstrates that synthetic data can eliminate human reliance in ML and provides a means for domain awareness in cases where many feature detections per image are needed.
arXiv Detail & Related papers (2024-08-02T20:15:15Z) - Socially Aware Synthetic Data Generation for Suicidal Ideation Detection
Using Large Language Models [8.832297887534445]
We introduce an innovative strategy that leverages the capabilities of generative AI models to create synthetic data for suicidal ideation detection.
We benchmarked against state-of-the-art NLP classification models, specifically, those centered around the BERT family structures.
Our synthetic data-driven method, informed by social factors, offers consistent F1-scores of 0.82 for both models.
arXiv Detail & Related papers (2024-01-25T18:25:05Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Self-Evolution Learning for Mixup: Enhance Data Augmentation on Few-Shot
Text Classification Tasks [75.42002070547267]
We propose a self evolution learning (SE) based mixup approach for data augmentation in text classification.
We introduce a novel instance specific label smoothing approach, which linearly interpolates the model's output and one hot labels of the original samples to generate new soft for label mixing up.
arXiv Detail & Related papers (2023-05-22T23:43:23Z) - Dialogue-Contextualized Re-ranking for Medical History-Taking [5.039849340960835]
We present a two-stage re-ranking approach that helps close the training-inference gap by re-ranking the first-stage question candidates.
We find that relative to the expert system, the best performance is achieved by our proposed global re-ranker with a transformer backbone.
arXiv Detail & Related papers (2023-04-04T17:31:32Z) - Hybrid Deep Learning Model using SPCAGAN Augmentation for Insider Threat
Analysis [7.576808824987132]
Anomaly detection using deep learning requires comprehensive data, but insider threat data is not readily available due to confidentiality concerns.
We propose a linear manifold learning-based generative adversarial network, SPCAGAN, that takes input from heterogeneous data sources.
We show that our proposed approach has a lower error, is more accurate, and generates substantially superior synthetic insider threat data than previous models.
arXiv Detail & Related papers (2022-03-06T02:08:48Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Causal Transfer Random Forest: Combining Logged Data and Randomized
Experiments for Robust Prediction [8.736551469632758]
We describe a causal transfer random forest (CTRF) that combines existing training data with a small amount of data from a randomized experiment to train a model.
We evaluate the CTRF using both synthetic data experiments and real-world experiments in the Bing Ads platform.
arXiv Detail & Related papers (2020-10-17T03:54:37Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
We evaluate the current state-of-the-art AES models using a model adversarial evaluation scheme and associated metrics.
We find that AES models are highly overstable. Even heavy modifications(as much as 25%) with content unrelated to the topic of the questions do not decrease the score produced by the models.
arXiv Detail & Related papers (2020-07-14T03:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.