An Optimal Time Variable Learning Framework for Deep Neural Networks
- URL: http://arxiv.org/abs/2204.08528v1
- Date: Mon, 18 Apr 2022 19:29:03 GMT
- Title: An Optimal Time Variable Learning Framework for Deep Neural Networks
- Authors: Harbir Antil, Hugo D\'iaz, Evelyn Herberg
- Abstract summary: The proposed framework can be applied to any of the existing networks such as ResNet, DenseNet or Fractional-DNN.
The proposed approach is applied to an ill-posed 3D-Maxwell's equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature propagation in Deep Neural Networks (DNNs) can be associated to
nonlinear discrete dynamical systems. The novelty, in this paper, lies in
letting the discretization parameter (time step-size) vary from layer to layer,
which needs to be learned, in an optimization framework. The proposed framework
can be applied to any of the existing networks such as ResNet, DenseNet or
Fractional-DNN. This framework is shown to help overcome the vanishing and
exploding gradient issues. Stability of some of the existing continuous DNNs
such as Fractional-DNN is also studied. The proposed approach is applied to an
ill-posed 3D-Maxwell's equation.
Related papers
- FFNB: Forgetting-Free Neural Blocks for Deep Continual Visual Learning [14.924672048447338]
We devise a dynamic network architecture for continual learning based on a novel forgetting-free neural block (FFNB)
Training FFNB features on new tasks is achieved using a novel procedure that constrains the underlying parameters in the null-space of the previous tasks.
arXiv Detail & Related papers (2021-11-22T17:23:34Z) - GrADE: A graph based data-driven solver for time-dependent nonlinear
partial differential equations [0.0]
We propose a novel framework referred to as the Graph Attention Differential Equation (GrADE) for solving time dependent nonlinear PDEs.
The proposed approach couples FNN, graph neural network, and recently developed Neural ODE framework.
Results obtained illustrate the capability of the proposed framework in modeling PDE and its scalability to larger domains without the need for retraining.
arXiv Detail & Related papers (2021-08-24T10:49:03Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - A unified framework for Hamiltonian deep neural networks [3.0934684265555052]
Training deep neural networks (DNNs) can be difficult due to vanishing/exploding gradients during weight optimization.
We propose a class of DNNs stemming from the time discretization of Hamiltonian systems.
The proposed Hamiltonian framework, besides encompassing existing networks inspired by marginally stable ODEs, allows one to derive new and more expressive architectures.
arXiv Detail & Related papers (2021-04-27T13:20:24Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Fractional Deep Neural Network via Constrained Optimization [0.0]
This paper introduces a novel algorithmic framework for a deep neural network (DNN)
Fractional-DNN can be viewed as a time-discretization of a fractional in time nonlinear ordinary differential equation (ODE)
arXiv Detail & Related papers (2020-04-01T21:58:21Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.