Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing
- URL: http://arxiv.org/abs/2204.09601v2
- Date: Fri, 15 Mar 2024 17:59:17 GMT
- Title: Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing
- Authors: Sonish Sivarajkumar, Thomas Yu CHow Tam, Haneef Ahamed Mohammad, Samual Viggiano, David Oniani, Shyam Visweswaran, Yanshan Wang,
- Abstract summary: Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age.
Traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience.
We developed a rule-based Natural Language Processing (NLP) algorithm, machine learning models, and Large Language Model(LLM)-based NLP algorithms to automate the extraction of sleep-related concepts.
- Score: 4.268772592648502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192,000 de-identified clinical notes of 7,266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based Natural Language Processing (NLP) algorithm, machine learning models, and Large Language Model(LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset. Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of Positive Predictive Value (PPV), rule-based NLP algorithm achieved 1.00 for daytime sleepiness and sleep duration, machine learning models: 0.95 and for napping, 0.86 for bad sleep quality and 0.90 for snoring; and LLAMA2 with finetuning achieved PPV of 0.93 for Night Wakings, 0.89 for sleep problem, and 1.00 for sleep duration. The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD, but could be extended to general sleep information extraction for other diseases.
Related papers
- SleepFM: Multi-modal Representation Learning for Sleep Across Brain Activity, ECG and Respiratory Signals [17.416001617612658]
Sleep is a complex physiological process evaluated through various modalities recording electrical brain, cardiac, and respiratory activities.
We developed SleepFM, the first multi-modal foundation model for sleep analysis.
We show that a novel leave-one-out approach for contrastive learning significantly improves downstream task performance.
arXiv Detail & Related papers (2024-05-28T02:43:53Z) - What Radio Waves Tell Us about Sleep [34.690382091650314]
We develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep.
We show that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM) and detects sleep apnea (AUROC = 0.88)
The model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders.
arXiv Detail & Related papers (2024-05-20T02:41:21Z) - Insomnia Identification via Electroencephalography [0.0]
An estimated 50 million people worldwide are thought to be affected by insomnia.
This study proposes a method that uses deep learning to automatically identify patients with insomnia.
arXiv Detail & Related papers (2024-02-09T08:59:37Z) - A machine-learning sleep-wake classification model using a reduced
number of features derived from photoplethysmography and activity signals [0.0]
Photoplethys (mography) has been demonstrated to be an effective signal for sleep stage inference.
In this work, we present a machine learning sleep-wake classification model based on the eXtreme Gradient Boosting algorithm.
The performance of our method was comparable to current state-of-the-art methods with a Sensitivity of 91.15 $pm$ 1.16%, Specificity of 53.66 $pm$ 1.12%, F1-score of 83.88 $pm$ 0.56%, and Kappa of 48.0 $pm$ 0.86%.
arXiv Detail & Related papers (2023-08-07T13:43:19Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - SleepPPG-Net: a deep learning algorithm for robust sleep staging from
continuous photoplethysmography [0.0]
We developed Sleep-Net, a DL model for 4-class sleep staging from the raw PPG time series.
We benchmarked the performance of Sleep-Net against models based on the best-reported state-of-the-art (SOTA) algorithms.
arXiv Detail & Related papers (2022-02-11T16:17:42Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.