Res-CNN-BiLSTM Network for overcoming Mental Health Disturbances caused
due to Cyberbullying through Social Media
- URL: http://arxiv.org/abs/2204.09738v1
- Date: Wed, 20 Apr 2022 18:40:39 GMT
- Title: Res-CNN-BiLSTM Network for overcoming Mental Health Disturbances caused
due to Cyberbullying through Social Media
- Authors: Raunak Joshi, Abhishek Gupta, Nandan Kanvinde
- Abstract summary: cyberbullying is done on the basis of Religion, Ethnicity, Age and Gender.
Social media is the medium and it generates massive form of data in textual form.
- Score: 3.1871776847712523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mental Health Disturbance has many reasons and cyberbullying is one of the
major causes that does exploitation using social media as an instrument. The
cyberbullying is done on the basis of Religion, Ethnicity, Age and Gender which
is a sensitive psychological issue. This can be addressed using Natural
Language Processing with Deep Learning, since social media is the medium and it
generates massive form of data in textual form. Such data can be leveraged to
find the semantics and derive what type of cyberbullying is done and who are
the people involved for early measures. Since deriving semantics is essential
we proposed a Hybrid Deep Learning Model named 1-Dimensional
CNN-Bidirectional-LSTMs with Residuals shortly known as Res-CNN-BiLSTM. In this
paper we have proposed the architecture and compared its performance with
different approaches of Embedding Deep Learning Algorithms.
Related papers
- Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying [1.8749305679160366]
cyberbullying is a serious problem that can harm the mental and physical health of people who use social media.
This paper explains just how serious cyberbullying is and how it really affects indi-viduals exposed to it.
It stresses how important it is to find better ways to detect cyberbullying so that online spaces can be safer.
arXiv Detail & Related papers (2024-04-01T20:41:28Z) - The Use of a Large Language Model for Cyberbullying Detection [0.0]
cyberbullying (CB) is the most prevalent phenomenon in todays cyber world.
It is a severe threat to the mental and physical health of citizens.
This opens the need to develop a robust system to prevent bullying content from online forums, blogs, and social media platforms.
arXiv Detail & Related papers (2024-02-06T15:46:31Z) - Explain Thyself Bully: Sentiment Aided Cyberbullying Detection with
Explanation [52.3781496277104]
Cyberbullying has become a big issue with the popularity of different social media networks and online communication apps.
Recent laws like "right to explanations" of General Data Protection Regulation have spurred research in developing interpretable models.
We develop first interpretable multi-task model called em mExCB for automatic cyberbullying detection from code-mixed languages.
arXiv Detail & Related papers (2024-01-17T07:36:22Z) - A Secure Open-Source Intelligence Framework For Cyberbullying
Investigation [0.0]
This paper proposes an open-source intelligence pipeline using data from Twitter to track keywords relevant to cyberbullying in social media.
An OSINT dashboard with real-time monitoring empowers law enforcement to swiftly take action, protect victims, and make significant strides toward creating a safer online environment.
arXiv Detail & Related papers (2023-07-27T23:03:57Z) - Cyberbullying in Text Content Detection: An Analytical Review [0.0]
Online social networks increase the user's exposure to life-threatening situations such as suicide, eating disorder, cybercrime, compulsive behavior, anxiety, and depression.
To tackle the issue of cyberbullying, most existing literature focuses on developing approaches to identifying factors and understanding the textual factors associated with cyberbullying.
This paper conducts a comprehensive literature review to provide an understanding of cyberbullying detection.
arXiv Detail & Related papers (2023-03-18T21:23:06Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - DISARM: Detecting the Victims Targeted by Harmful Memes [49.12165815990115]
DISARM is a framework that uses named entity recognition and person identification to detect harmful memes.
We show that DISARM significantly outperforms ten unimodal and multimodal systems.
It can reduce the relative error rate for harmful target identification by up to 9 points absolute over several strong multimodal rivals.
arXiv Detail & Related papers (2022-05-11T19:14:26Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Clustering of Social Media Messages for Humanitarian Aid Response during
Crisis [47.187609203210705]
We show that recent advances in Deep Learning and Natural Language Processing outperform prior approaches for the task of classifying informativeness.
We extend these methods to two sub-tasks of informativeness and find that the Deep Learning methods are effective here as well.
arXiv Detail & Related papers (2020-07-23T02:18:05Z) - Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining
Representations for Cyberbullying Classification [4.945634077636197]
We study the nuanced problem of cyberbullying using five explicit factors to represent its social and linguistic aspects.
These results demonstrate the importance of representing and modeling cyberbullying as a social phenomenon.
arXiv Detail & Related papers (2020-04-04T00:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.