Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images
- URL: http://arxiv.org/abs/2204.09866v1
- Date: Thu, 21 Apr 2022 03:42:31 GMT
- Title: Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images
- Authors: Chao Wen, Yinda Zhang, Chenjie Cao, Zhuwen Li, Xiangyang Xue, Yanwei
Fu
- Abstract summary: We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
- Score: 82.32776379815712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of shape generation in 3D mesh representation from a
small number of color images with or without camera poses. While many previous
works learn to hallucinate the shape directly from priors, we adopt to further
improve the shape quality by leveraging cross-view information with a graph
convolution network. Instead of building a direct mapping function from images
to 3D shape, our model learns to predict series of deformations to improve a
coarse shape iteratively. Inspired by traditional multiple view geometry
methods, our network samples nearby area around the initial mesh's vertex
locations and reasons an optimal deformation using perceptual feature
statistics built from multiple input images. Extensive experiments show that
our model produces accurate 3D shapes that are not only visually plausible from
the input perspectives, but also well aligned to arbitrary viewpoints. With the
help of physically driven architecture, our model also exhibits generalization
capability across different semantic categories, and the number of input
images. Model analysis experiments show that our model is robust to the quality
of the initial mesh and the error of camera pose, and can be combined with a
differentiable renderer for test-time optimization.
Related papers
- Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
We propose a novel image editing technique that enables 3D manipulations on single images.
Our method directly leverages powerful image diffusion models trained on a broad spectrum of text-image pairs.
Our method can generate high-quality 3D-aware image edits with large viewpoint transformations and high appearance and shape consistency with the input image.
arXiv Detail & Related papers (2024-03-18T06:18:59Z) - 3DMiner: Discovering Shapes from Large-Scale Unannotated Image Datasets [34.610546020800236]
3DMiner is a pipeline for mining 3D shapes from challenging datasets.
Our method is capable of producing significantly better results than state-of-the-art unsupervised 3D reconstruction techniques.
We show how 3DMiner can be applied to in-the-wild data by reconstructing shapes present in images from the LAION-5B dataset.
arXiv Detail & Related papers (2023-10-29T23:08:19Z) - Explorable Mesh Deformation Subspaces from Unstructured Generative
Models [53.23510438769862]
Deep generative models of 3D shapes often feature continuous latent spaces that can be used to explore potential variations.
We present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model.
arXiv Detail & Related papers (2023-10-11T18:53:57Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Using Adaptive Gradient for Texture Learning in Single-View 3D
Reconstruction [0.0]
Learning-based approaches for 3D model reconstruction have attracted attention owing to its modern applications.
We present a novel sampling algorithm by optimizing the gradient of predicted coordinates based on the variance on the sampling image.
We also adopt Frechet Inception Distance (FID) to form a loss function in learning, which helps bridging the gap between rendered images and input images.
arXiv Detail & Related papers (2021-04-29T07:52:54Z) - Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using
Deep Shape Priors [69.02332607843569]
PriSMONet is a novel approach for learning Multi-Object 3D scene decomposition and representations from single images.
A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image.
We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation.
arXiv Detail & Related papers (2020-10-08T14:49:23Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.