Towards Reliable Neural Generative Modeling of Detectors
- URL: http://arxiv.org/abs/2204.09947v1
- Date: Thu, 21 Apr 2022 08:14:24 GMT
- Title: Towards Reliable Neural Generative Modeling of Detectors
- Authors: Lucio Anderlini, Matteo Barbetti, Denis Derkach, Nikita Kazeev, Artem
Maevskiy, Sergei Mokhnenko
- Abstract summary: We discuss the application of generative adversarial networks (GANs) to the simulation of the LHCb experiment events.
Results are based on the Geant4 simulation of the LHCb Cherenkov detector.
- Score: 0.45671221781968335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing luminosities of future data taking at Large Hadron Collider
and next generation collider experiments require an unprecedented amount of
simulated events to be produced. Such large scale productions demand a
significant amount of valuable computing resources. This brings a demand to use
new approaches to event generation and simulation of detector responses. In
this paper, we discuss the application of generative adversarial networks
(GANs) to the simulation of the LHCb experiment events. We emphasize main
pitfalls in the application of GANs and study the systematic effects in detail.
The presented results are based on the Geant4 simulation of the LHCb Cherenkov
detector.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
This thesis aims to overcome this challenge for the Pixel Vertex Detector (PXD) at the Belle II experiment.
This study introduces, for the first time, the results of using deep generative models for ultra-high granularity detector simulation in Particle Physics.
arXiv Detail & Related papers (2024-03-05T23:12:47Z) - Generative Models for Simulation of KamLAND-Zen [0.0]
Search for neutrinoless double beta decay (0nubetabeta) are poised to answer deep questions on the nature of neutrinos.
To claim discovery, accurate and efficient simulations of detector events that mimic 0nubetabeta is critical.
Traditional Monte Carlo simulations can be supplemented by machine-learning-based generative models.
arXiv Detail & Related papers (2023-12-22T01:47:16Z) - Lamarr: LHCb ultra-fast simulation based on machine learning models deployed within Gauss [0.0]
We discuss Lamarr, a framework to speed-up the simulation production parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment.
Deep Generative Models powered by several algorithms and strategies are employed to effectively parameterize the high-level response of the single components of the LHCb detector.
arXiv Detail & Related papers (2023-03-20T20:18:04Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Data Augmentation at the LHC through Analysis-specific Fast Simulation
with Deep Learning [4.666011151359189]
We present a fast simulation application based on a Deep Neural Network, designed to create large analysis-specific datasets.
We propose a novel fast-simulation workflow that starts from a large amount of generator-level events to deliver large analysis-specific samples.
arXiv Detail & Related papers (2020-10-05T07:48:45Z) - Generative Adversarial Networks for LHCb Fast Simulation [0.7106986689736827]
LHCb generative models are being investigated in order to accelerate the generation of showers in the calorimeter and high-level responses of Cherenkov detector.
We demonstrate this approach provides high-fidelity results along with a significant speed increase and discuss possible implication of these results.
arXiv Detail & Related papers (2020-03-21T22:46:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.