Absolute Wrong Makes Better: Boosting Weakly Supervised Object Detection
via Negative Deterministic Information
- URL: http://arxiv.org/abs/2204.10068v2
- Date: Wed, 17 May 2023 06:17:01 GMT
- Title: Absolute Wrong Makes Better: Boosting Weakly Supervised Object Detection
via Negative Deterministic Information
- Authors: Guanchun Wang, Xiangrong Zhang, Zelin Peng, Xu Tang, Huiyu Zhou,
Licheng Jiao
- Abstract summary: Weakly supervised object detection (WSOD) is a challenging task, in which image-level labels are used to train an object detector.
This paper focuses on identifying and fully exploiting the deterministic information in WSOD.
We propose a negative deterministic information (NDI) based method for improving WSOD, namely NDI-WSOD.
- Score: 54.35679298764169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised object detection (WSOD) is a challenging task, in which
image-level labels (e.g., categories of the instances in the whole image) are
used to train an object detector. Many existing methods follow the standard
multiple instance learning (MIL) paradigm and have achieved promising
performance. However, the lack of deterministic information leads to part
domination and missing instances. To address these issues, this paper focuses
on identifying and fully exploiting the deterministic information in WSOD. We
discover that negative instances (i.e. absolutely wrong instances), ignored in
most of the previous studies, normally contain valuable deterministic
information. Based on this observation, we here propose a negative
deterministic information (NDI) based method for improving WSOD, namely
NDI-WSOD. Specifically, our method consists of two stages: NDI collecting and
exploiting. In the collecting stage, we design several processes to identify
and distill the NDI from negative instances online. In the exploiting stage, we
utilize the extracted NDI to construct a novel negative contrastive learning
mechanism and a negative guided instance selection strategy for dealing with
the issues of part domination and missing instances, respectively. Experimental
results on several public benchmarks including VOC 2007, VOC 2012 and MS COCO
show that our method achieves satisfactory performance.
Related papers
- Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Towards End-to-End Unsupervised Saliency Detection with Self-Supervised
Top-Down Context [25.85453873366275]
We propose a self-supervised end-to-end salient object detection framework via top-down context.
We exploit the self-localization from the deepest feature to construct the location maps which are then leveraged to learn the most instructive segmentation guidance.
Our method achieves leading performance among the recent end-to-end methods and most of the multi-stage solutions.
arXiv Detail & Related papers (2023-10-14T08:43:22Z) - SIOD: Single Instance Annotated Per Category Per Image for Object
Detection [67.64774488115299]
We propose the Single Instance annotated Object Detection (SIOD), requiring only one instance annotation for each existing category in an image.
Degraded from inter-task (WSOD) or inter-image (SSOD) discrepancies to the intra-image discrepancy, SIOD provides more reliable and rich prior knowledge for mining the rest of unlabeled instances.
Under the SIOD setting, we propose a simple yet effective framework, termed Dual-Mining (DMiner), which consists of a Similarity-based Pseudo Label Generating module (SPLG) and a Pixel-level Group Contrastive Learning module (PGCL)
arXiv Detail & Related papers (2022-03-29T08:49:51Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
We construct a general SALient Object Detection (SALOD) benchmark to conduct a comprehensive comparison among several representative SOD methods.
In the above experiments, we find that existing loss functions usually specialized in some metrics but reported inferior results on the others.
We propose a novel Edge-Aware (EA) loss that promotes deep networks to learn more discriminative features by integrating both pixel- and image-level supervision signals.
arXiv Detail & Related papers (2022-02-07T03:43:16Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
We propose a discoveryand-selection approach fused with multiple instance learning (DS-MIL)
Our proposed DS-MIL approach can consistently improve the baselines, reporting state-of-the-art performance.
arXiv Detail & Related papers (2021-10-18T07:06:57Z) - Multiple instance active learning for object detection [0.0]
Multiple Instance Active Object Detection (MI-AOD) is an instance-level active learning method for object detection.
MI-AOD treats unlabeled images as instance bags and feature anchors in images as instances.
MI-AOD outperforms state-of-the-art methods with significant margins.
arXiv Detail & Related papers (2021-04-06T07:03:38Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
Weakly supervised object detection (WSOD) aims to tackle the object detection problem using only labeled image categories as supervision.
We present an adaptive supervision aggregation function that dynamically changes the aggregation criteria for selecting boxes related to one of the ground-truth classes, background, or even ignored during the generation of each refinement module supervision.
arXiv Detail & Related papers (2020-04-23T02:49:40Z) - Instance-aware, Context-focused, and Memory-efficient Weakly Supervised
Object Detection [184.563345153682]
We develop an instance-aware and context-focused unified framework for weakly supervised learning.
It employs an instance-aware self-training algorithm and a learnable Concrete DropBlock while devising a memory-efficient sequential batch back-propagation.
Our proposed method state-of-the-art results on COCO ($12.1% AP$, $24.8% AP_50$), VOC 2007 ($54.9% AP$), and VOC 2012 ($52.1% AP$)
arXiv Detail & Related papers (2020-04-09T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.