Learning to Revise References for Faithful Summarization
- URL: http://arxiv.org/abs/2204.10290v1
- Date: Wed, 13 Apr 2022 18:54:19 GMT
- Title: Learning to Revise References for Faithful Summarization
- Authors: Griffin Adams, Han-Chin Shing, Qing Sun, Christopher Winestock,
Kathleen McKeown, No\'emie Elhadad
- Abstract summary: We propose a new approach to improve reference quality while retaining all data.
We construct synthetic unsupported alternatives to supported sentences and use contrastive learning to discourage/encourage (un)faithful revisions.
We extract a small corpus from a noisy source--the Electronic Health Record (EHR)--for the task of summarizing a hospital admission from multiple notes.
- Score: 10.795263196202159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real-world scenarios with naturally occurring datasets, reference
summaries are noisy and contain information that cannot be inferred from the
source text. On large news corpora, removing low quality samples has been shown
to reduce model hallucinations. Yet, this method is largely untested for
smaller, noisier corpora. To improve reference quality while retaining all
data, we propose a new approach: to revise--not remove--unsupported reference
content. Without ground-truth supervision, we construct synthetic unsupported
alternatives to supported sentences and use contrastive learning to
discourage/encourage (un)faithful revisions. At inference, we vary style codes
to over-generate revisions of unsupported reference sentences and select a
final revision which balances faithfulness and abstraction. We extract a small
corpus from a noisy source--the Electronic Health Record (EHR)--for the task of
summarizing a hospital admission from multiple notes. Training models on
original, filtered, and revised references, we find (1) learning from revised
references reduces the hallucination rate substantially more than filtering
(18.4\% vs 3.8\%), (2) learning from abstractive (vs extractive) revisions
improves coherence, relevance, and faithfulness, (3) beyond redress of noisy
data, the revision task has standalone value for the task: as a pre-training
objective and as a post-hoc editor.
Related papers
- Correction with Backtracking Reduces Hallucination in Summarization [29.093092115901694]
Abstractive summarization aims at generating natural language summaries of a source document that are succinct while preserving the important elements.
Despite recent advances, neural text summarization models are known to be susceptible to hallucinating.
We introduce a simple yet efficient technique, CoBa, to reduce hallucination in abstractive summarization.
arXiv Detail & Related papers (2023-10-24T20:48:11Z) - Learning with Rejection for Abstractive Text Summarization [42.15551472507393]
We propose a training objective for abstractive summarization based on rejection learning.
We show that our method considerably improves the factuality of generated summaries in automatic and human evaluations.
arXiv Detail & Related papers (2023-02-16T19:07:08Z) - Pre-trained Language Models as Re-Annotators [3.193067591317475]
We investigate how to acquire semantic sensitive annotation representations from Pre-trained Language Models.
We fine-tune the Pre-trained Language Models based with cross-validation for annotation correction.
We study the re-annotation in relation extraction and create a new manually revised dataset, Re-DocRED.
arXiv Detail & Related papers (2022-05-11T09:28:23Z) - Efficient Few-Shot Fine-Tuning for Opinion Summarization [83.76460801568092]
Abstractive summarization models are typically pre-trained on large amounts of generic texts, then fine-tuned on tens or hundreds of thousands of annotated samples.
We show that a few-shot method based on adapters can easily store in-domain knowledge.
We show that this self-supervised adapter pre-training improves summary quality over standard fine-tuning by 2.0 and 1.3 ROUGE-L points on the Amazon and Yelp datasets.
arXiv Detail & Related papers (2022-05-04T16:38:37Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
We collect a large dataset of summaries paired with user reviews for over 31,000 products, enabling supervised training.
The content of many reviews is not reflected in the human-written summaries, and, thus, the summarizer trained on random review subsets hallucinates.
We formulate the task as jointly learning to select informative subsets of reviews and summarizing the opinions expressed in these subsets.
arXiv Detail & Related papers (2021-09-09T15:01:43Z) - A Token-level Reference-free Hallucination Detection Benchmark for
Free-form Text Generation [50.55448707570669]
We propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDes.
To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations.
arXiv Detail & Related papers (2021-04-18T04:09:48Z) - Unsupervised Reference-Free Summary Quality Evaluation via Contrastive
Learning [66.30909748400023]
We propose to evaluate the summary qualities without reference summaries by unsupervised contrastive learning.
Specifically, we design a new metric which covers both linguistic qualities and semantic informativeness based on BERT.
Experiments on Newsroom and CNN/Daily Mail demonstrate that our new evaluation method outperforms other metrics even without reference summaries.
arXiv Detail & Related papers (2020-10-05T05:04:14Z) - SueNes: A Weakly Supervised Approach to Evaluating Single-Document
Summarization via Negative Sampling [25.299937353444854]
We present a proof-of-concept study to a weakly supervised summary evaluation approach without the presence of reference summaries.
Massive data in existing summarization datasets are transformed for training by pairing documents with corrupted reference summaries.
arXiv Detail & Related papers (2020-05-13T15:40:13Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof.
At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise.
arXiv Detail & Related papers (2020-04-21T16:54:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.