SoftEdge: Regularizing Graph Classification with Random Soft Edges
- URL: http://arxiv.org/abs/2204.10390v1
- Date: Thu, 21 Apr 2022 20:12:36 GMT
- Title: SoftEdge: Regularizing Graph Classification with Random Soft Edges
- Authors: Hongyu Guo and Sun Sun
- Abstract summary: Graph data augmentation plays a vital role in regularizing Graph Neural Networks (GNNs)
Simple edge and node manipulations can create graphs with an identical structure or indistinguishable structures to message passing GNNs but of conflict labels.
We propose SoftEdge, which assigns random weights to a portion of the edges of a given graph to construct dynamic neighborhoods over the graph.
- Score: 18.165965620873745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph data augmentation plays a vital role in regularizing Graph Neural
Networks (GNNs), which leverage information exchange along edges in graphs, in
the form of message passing, for learning. Due to their effectiveness, simple
edge and node manipulations (e.g., addition and deletion) have been widely used
in graph augmentation. In this paper, we identify a limitation in such a common
augmentation technique. That is, simple edge and node manipulations can create
graphs with an identical structure or indistinguishable structures to message
passing GNNs but of conflict labels, leading to the sample collision issue and
thus the degradation of model performance. To address this problem, we propose
SoftEdge, which assigns random weights to a portion of the edges of a given
graph to construct dynamic neighborhoods over the graph. We prove that SoftEdge
creates collision-free augmented graphs. We also show that this simple method
obtains superior accuracy to popular node and edge manipulation approaches and
notable resilience to the accuracy degradation with the GNN depth.
Related papers
- ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural Networks [53.41164429486268]
Graph Neural Networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes.
The performance of GNNs is limited by poor generalization and fragile robustness caused by noisy and redundant graph data.
We propose a novel adversarial edge-dropping method (ADEdgeDrop) that leverages an adversarial edge predictor guiding the removal of edges.
arXiv Detail & Related papers (2024-03-14T08:31:39Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - DiP-GNN: Discriminative Pre-Training of Graph Neural Networks [49.19824331568713]
Graph neural network (GNN) pre-training methods have been proposed to enhance the power of GNNs.
One popular pre-training method is to mask out a proportion of the edges, and a GNN is trained to recover them.
In our framework, the graph seen by the discriminator better matches the original graph because the generator can recover a proportion of the masked edges.
arXiv Detail & Related papers (2022-09-15T17:41:50Z) - Training Robust Graph Neural Networks with Topology Adaptive Edge
Dropping [116.26579152942162]
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data.
Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data.
This paper proposes Topology Adaptive Edge Dropping to improve generalization performance and learn robust GNN models.
arXiv Detail & Related papers (2021-06-05T13:20:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - GraphCrop: Subgraph Cropping for Graph Classification [36.33477716380905]
We develop the textbfGraphCrop (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission.
By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense.
arXiv Detail & Related papers (2020-09-22T14:05:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.