Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor
Classification
- URL: http://arxiv.org/abs/2204.10418v1
- Date: Thu, 21 Apr 2022 21:48:01 GMT
- Title: Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor
Classification
- Authors: Darwin Quezada-Gaibor, Joaqu\'in Torres-Sospedra, Jari Nurmi, Yevgeni
Koucheryavy and Joaqu\'in Huerta
- Abstract summary: We propose a lightweight combination of CNN and ELM, which provides a quick and accurate classification of building and floor.
As a result, the proposed model is 58% faster than the benchmark, with a slight improvement in the classification accuracy.
- Score: 6.154022105385209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning models have become an essential tool in current indoor
positioning solutions, given their high capabilities to extract meaningful
information from the environment. Convolutional neural networks (CNNs) are one
of the most used neural networks (NNs) due to that they are capable of learning
complex patterns from the input data. Another model used in indoor positioning
solutions is the Extreme Learning Machine (ELM), which provides an acceptable
generalization performance as well as a fast speed of learning. In this paper,
we offer a lightweight combination of CNN and ELM, which provides a quick and
accurate classification of building and floor, suitable for power and
resource-constrained devices. As a result, the proposed model is 58\% faster
than the benchmark, with a slight improvement in the classification accuracy
(by less than 1\%
Related papers
- Reusing Convolutional Neural Network Models through Modularization and
Composition [22.823870645316397]
We propose two modularization approaches named CNNSplitter and GradSplitter.
CNNSplitter decomposes a trained convolutional neural network (CNN) model into $N$ small reusable modules.
The resulting modules can be reused to patch existing CNN models or build new CNN models through composition.
arXiv Detail & Related papers (2023-11-08T03:18:49Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - NL-CNN: A Resources-Constrained Deep Learning Model based on Nonlinear
Convolution [0.0]
A novel convolution neural network model, abbreviated NL-CNN, is proposed, where nonlinear convolution is emulated in a cascade of convolution + nonlinearity layers.
Performance evaluation for several widely known datasets is provided, showing several relevant features.
arXiv Detail & Related papers (2021-01-30T13:38:42Z) - Superiorities of Deep Extreme Learning Machines against Convolutional
Neural Networks [3.04585143845864]
Deep Learning (DL) is a machine learning procedure for artificial intelligence that analyzes the input data in detail.
DL has a popularity with the common improvements on the graphical processing unit capabilities.
Deep Extreme Learning machines (Deep ELM) is one of the fastest and effective way to meet fast classification problems.
arXiv Detail & Related papers (2021-01-21T08:22:18Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Training Deep Neural Networks with Constrained Learning Parameters [4.917317902787792]
A significant portion of deep learning tasks would run on edge computing systems.
We propose the Combinatorial Neural Network Training Algorithm (CoNNTrA)
CoNNTrA trains deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets.
Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.
arXiv Detail & Related papers (2020-09-01T16:20:11Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.