Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation
- URL: http://arxiv.org/abs/2204.10509v1
- Date: Fri, 22 Apr 2022 05:32:08 GMT
- Title: Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation
- Authors: Shihang Wang, Xinchao Xu, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng
Wang
- Abstract summary: This paper presents a novel task of empathetic dialog generation with positive emotion elicitation.
The agent conducts empathetic responses along with the target of eliciting the user's positive emotions in the multi-turn dialog.
We collect a large-scale emotional dialog dataset with positive emotion elicitation, called PosEmoDial.
- Score: 39.747587984500406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotional support is a crucial skill for many real-world scenarios, including
caring for the elderly, mental health support, and customer service chats. This
paper presents a novel task of empathetic dialog generation with positive
emotion elicitation to promote users' positive emotions, similar to that of
emotional support between humans. In this task, the agent conducts empathetic
responses along with the target of eliciting the user's positive emotions in
the multi-turn dialog. To facilitate the study of this task, we collect a
large-scale emotional dialog dataset with positive emotion elicitation, called
PosEmoDial (about 820k dialogs, 3M utterances). In these dialogs, the agent
tries to guide the user from any possible initial emotional state, e.g.,
sadness, to a positive emotional state. Then we present a
positive-emotion-guided dialog generation model with a novel loss function
design. This loss function encourages the dialog model to not only elicit
positive emotions from users but also ensure smooth emotional transitions along
with the whole dialog. Finally, we establish benchmark results on PosEmoDial,
and we will release this dataset and related source code to facilitate future
studies.
Related papers
- Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
We propose a two-stage conversational agent for the generation of emotional dialogue.
First, a dialogue model trained without the emotion-annotated dialogue corpus generates a prototype response that meets the contextual semantics.
Secondly, the first-stage prototype is modified by a controllable emotion refiner with the empathy hypothesis.
arXiv Detail & Related papers (2023-01-12T10:03:56Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - Chat-Capsule: A Hierarchical Capsule for Dialog-level Emotion Analysis [70.98130990040228]
We propose a Context-based Hierarchical Attention Capsule(Chat-Capsule) model, which models both utterance-level and dialog-level emotions and their interrelations.
On a dialog dataset collected from customer support of an e-commerce platform, our model is also able to predict user satisfaction and emotion curve category.
arXiv Detail & Related papers (2022-03-23T08:04:30Z) - Automatically Select Emotion for Response via Personality-affected
Emotion Transition [0.0]
dialog systems should be capable to automatically select appropriate emotions for responses like humans.
Most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked.
We equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation.
arXiv Detail & Related papers (2021-06-30T07:00:42Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Emotion Eliciting Machine: Emotion Eliciting Conversation Generation
based on Dual Generator [18.711852474600143]
We study the problem of positive emotion elicitation, which aims to generate responses that can elicit positive emotion of the user.
We propose a weakly supervised Emotion Eliciting Machine (EEM) to address this problem.
EEM outperforms the existing models in generating responses with positive emotion elicitation.
arXiv Detail & Related papers (2021-05-18T03:19:25Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.