A benchmark dataset for deep learning-based airplane detection: HRPlanes
- URL: http://arxiv.org/abs/2204.10959v2
- Date: Tue, 11 Jun 2024 11:04:06 GMT
- Title: A benchmark dataset for deep learning-based airplane detection: HRPlanes
- Authors: Tolga Bakirman, Elif Sertel,
- Abstract summary: We create a novel airplane detection dataset called High Resolution Planes (HRPlanes) by using images from Google Earth (GE)
HRPlanes include GE images of several different airports across the world to represent a variety of landscape, seasonal and satellite geometry conditions obtained from different satellites.
Our preliminary results show that the proposed dataset can be a valuable data source and benchmark data set for future applications.
- Score: 3.5297361401370044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Airplane detection from satellite imagery is a challenging task due to the complex backgrounds in the images and differences in data acquisition conditions caused by the sensor geometry and atmospheric effects. Deep learning methods provide reliable and accurate solutions for automatic detection of airplanes; however, huge amount of training data is required to obtain promising results. In this study, we create a novel airplane detection dataset called High Resolution Planes (HRPlanes) by using images from Google Earth (GE) and labeling the bounding box of each plane on the images. HRPlanes include GE images of several different airports across the world to represent a variety of landscape, seasonal and satellite geometry conditions obtained from different satellites. We evaluated our dataset with two widely used object detection methods namely YOLOv4 and Faster R-CNN. Our preliminary results show that the proposed dataset can be a valuable data source and benchmark data set for future applications. Moreover, proposed architectures and results of this study could be used for transfer learning of different datasets and models for airplane detection.
Related papers
- FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - AVOIDDS: Aircraft Vision-based Intruder Detection Dataset and Simulator [37.579437595742995]
We introduce AVOIDDS, a realistic object detection benchmark for the vision-based aircraft detect-and-avoid problem.
We provide a labeled dataset consisting of 72,000 photorealistic images of intruder aircraft with various lighting conditions.
We also provide an interface that evaluates trained models on slices of this dataset to identify changes in performance with respect to changing environmental conditions.
arXiv Detail & Related papers (2023-06-19T23:58:07Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - LARD - Landing Approach Runway Detection -- Dataset for Vision Based
Landing [2.7400353551392853]
We present a dataset of high-quality aerial images for the task of runway detection during approach and landing phases.
Most of the dataset is composed of synthetic images but we also provide manually labelled images from real landing footages.
This dataset paves the way for further research such as the analysis of dataset quality or the development of models to cope with the detection tasks.
arXiv Detail & Related papers (2023-04-05T08:25:55Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios
using Aerial Imagery [3.8902657229395894]
We introduce a large-scale dataset for multi-class vehicle detection with object orientation information in aerial imagery.
It features high-resolution aerial images composed of different real-world situations with a wide variety of camera sensor, resolution, flight altitude, weather, illumination, haze, shadow, time, city, country, occlusion, and camera angle.
It contains 215,986 instances annotated with oriented bounding boxes defined by four points and orientation, making it by far the largest dataset to date in this task.
It also supports researches on the haze and shadow removal as well as super-resolution and in-painting applications.
arXiv Detail & Related papers (2020-07-12T23:00:30Z) - Weakly-supervised land classification for coastal zone based on deep convolutional neural networks by incorporating dual-polarimetric characteristics into training dataset [1.0494061710470493]
We explore the performance of DCNNs on semantic segmentation using spaceborne polarimetric synthetic aperture radar (PolSAR) datasets.
The semantic segmentation task using PolSAR data can be categorized as weakly supervised learning when the characteristics of SAR data and data annotating procedures are factored in.
Three DCNN models, including SegNet, U-Net, and LinkNet, are implemented next.
arXiv Detail & Related papers (2020-03-30T17:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.