TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
Using Joint 2D-3D Learning
- URL: http://arxiv.org/abs/2204.10993v2
- Date: Tue, 16 Jan 2024 18:37:11 GMT
- Title: TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
Using Joint 2D-3D Learning
- Authors: Qiaojun Feng, Nikolay Atanasov
- Abstract summary: This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera maintained by a visual odometry algorithm.
The mesh can be assembled into a global environment model to capture the terrain topology and semantics during online operation.
- Score: 20.81202315793742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers outdoor terrain mapping using RGB images obtained from
an aerial vehicle. While feature-based localization and mapping techniques
deliver real-time vehicle odometry and sparse keypoint depth reconstruction, a
dense model of the environment geometry and semantics (vegetation, buildings,
etc.) is usually recovered offline with significant computation and storage.
This paper develops a joint 2D-3D learning approach to reconstruct a local
metric-semantic mesh at each camera keyframe maintained by a visual odometry
algorithm. Given the estimated camera trajectory, the local meshes can be
assembled into a global environment model to capture the terrain topology and
semantics during online operation. A local mesh is reconstructed using an
initialization and refinement stage. In the initialization stage, we estimate
the mesh vertex elevation by solving a least squares problem relating the
vertex barycentric coordinates to the sparse keypoint depth measurements. In
the refinement stage, we associate 2D image and semantic features with the 3D
mesh vertices using camera projection and apply graph convolution to refine the
mesh vertex spatial coordinates and semantic features based on joint 2D and 3D
supervision. Quantitative and qualitative evaluation using real aerial images
show the potential of our method to support environmental monitoring and
surveillance applications.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
List is a novel neural architecture that leverages local and global image features to reconstruct geometric and topological structure of a 3D object from a single image.
We show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
arXiv Detail & Related papers (2023-07-23T01:01:27Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Pixel-Aligned Non-parametric Hand Mesh Reconstruction [16.62199923065314]
Non-parametric mesh reconstruction has recently shown significant progress in 3D hand and body applications.
In this paper, we seek to establish and exploit this mapping with a simple and compact architecture.
We propose an end-to-end pipeline for hand mesh recovery tasks which consists of three phases.
arXiv Detail & Related papers (2022-10-17T15:53:18Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Soft Expectation and Deep Maximization for Image Feature Detection [68.8204255655161]
We propose SEDM, an iterative semi-supervised learning process that flips the question and first looks for repeatable 3D points, then trains a detector to localize them in image space.
Our results show that this new model trained using SEDM is able to better localize the underlying 3D points in a scene.
arXiv Detail & Related papers (2021-04-21T00:35:32Z) - Mesh Reconstruction from Aerial Images for Outdoor Terrain Mapping Using
Joint 2D-3D Learning [12.741811850885309]
This paper addresses outdoor terrain mapping using overhead images obtained from an unmanned aerial vehicle.
Dense depth estimation from aerial images during flight is challenging.
We develop a joint 2D-3D learning approach to reconstruct local meshes at each camera, which can be assembled into a global environment model.
arXiv Detail & Related papers (2021-01-06T02:09:03Z) - Joint Spatial-Temporal Optimization for Stereo 3D Object Tracking [34.40019455462043]
We propose a joint spatial-temporal optimization-based stereo 3D object tracking method.
From the network, we detect corresponding 2D bounding boxes on adjacent images and regress an initial 3D bounding box.
Dense object cues that associating to the object centroid are then predicted using a region-based network.
arXiv Detail & Related papers (2020-04-20T13:59:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.