Discriminative Feature Learning Framework with Gradient Preference for
Anomaly Detection
- URL: http://arxiv.org/abs/2204.11014v1
- Date: Sat, 23 Apr 2022 08:05:15 GMT
- Title: Discriminative Feature Learning Framework with Gradient Preference for
Anomaly Detection
- Authors: Muhao Xu, Xueying Zhou, Xizhan Gao, WeiKai He, Sijie Niu
- Abstract summary: We propose a novel discriminative feature learning framework with gradient preference for anomaly detection.
Specifically, we design a gradient preference based selector to store powerful feature points in space and then construct a feature repository.
Our method outperforms the state-of-the-art in few shot anomaly detection.
- Score: 6.026443496519457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised representation learning has been extensively employed in anomaly
detection, achieving impressive performance. Extracting valuable feature
vectors that can remarkably improve the performance of anomaly detection are
essential in unsupervised representation learning. To this end, we propose a
novel discriminative feature learning framework with gradient preference for
anomaly detection. Specifically, we firstly design a gradient preference based
selector to store powerful feature points in space and then construct a feature
repository, which alleviate the interference of redundant feature vectors and
improve inference efficiency. To overcome the looseness of feature vectors,
secondly, we present a discriminative feature learning with center constrain to
map the feature repository to a compact subspace, so that the anomalous samples
are more distinguishable from the normal ones. Moreover, our method can be
easily extended to anomaly localization. Extensive experiments on popular
industrial and medical anomaly detection datasets demonstrate our proposed
framework can achieve competitive results in both anomaly detection and
localization. More important, our method outperforms the state-of-the-art in
few shot anomaly detection.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - MGFN: Magnitude-Contrastive Glance-and-Focus Network for
Weakly-Supervised Video Anomaly Detection [39.923871347007875]
We propose a novel glance and focus network to integrate spatial-temporal information for accurate anomaly detection.
Existing approaches that use feature magnitudes to represent the degree of anomalies typically ignore the effects of scene variations.
We propose the Feature Amplification Mechanism and a Magnitude Contrastive Loss to enhance the discriminativeness of feature magnitudes for detecting anomalies.
arXiv Detail & Related papers (2022-11-28T07:10:36Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
We present an approach -- Context preserving Algorithmic Recourse for Anomalies in Tabular data (CARAT)
CARAT uses a transformer based encoder-decoder model to explain an anomaly by finding features with low likelihood.
Semantically coherent counterfactuals are generated by modifying the highlighted features, using the overall context of features in the anomalous instance(s)
arXiv Detail & Related papers (2022-06-29T03:30:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - ARES: Locally Adaptive Reconstruction-based Anomaly Scoring [25.707159917988733]
We show that anomaly scoring function is not adaptive to the natural variation in reconstruction error across the range of normal samples.
We propose a novel Adaptive Reconstruction Error-based Scoring approach, which adapts its scoring based on the local behaviour of reconstruction error over the latent space.
arXiv Detail & Related papers (2022-06-15T15:35:12Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.