Better Query Graph Selection for Knowledge Base Question Answering
- URL: http://arxiv.org/abs/2204.12662v1
- Date: Wed, 27 Apr 2022 01:53:06 GMT
- Title: Better Query Graph Selection for Knowledge Base Question Answering
- Authors: Yonghui Jia and Wenliang Chen
- Abstract summary: This paper presents a novel approach based on semantic parsing to improve the performance of Knowledge Base Question Answering (KBQA)
Specifically, we focus on how to select an optimal query graph from a candidate set so as to retrieve the answer from knowledge base (KB)
- Score: 2.367061689316429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach based on semantic parsing to improve the
performance of Knowledge Base Question Answering (KBQA). Specifically, we focus
on how to select an optimal query graph from a candidate set so as to retrieve
the answer from knowledge base (KB). In our approach, we first propose to
linearize the query graph into a sequence, which is used to form a sequence
pair with the question. It allows us to use mature sequence modeling, such as
BERT, to encode the sequence pair. Then we use a ranking method to sort
candidate query graphs. In contrast to the previous studies, our approach can
efficiently model semantic interactions between the graph and the question as
well as rank the candidate graphs from a global view. The experimental results
show that our system achieves the top performance on ComplexQuestions and the
second best performance on WebQuestions.
Related papers
- G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Graph Attention with Hierarchies for Multi-hop Question Answering [19.398300844233837]
We present two extensions to the SOTA Graph Neural Network (GNN) based model for HotpotQA.
Experiments on HotpotQA demonstrate the efficiency of the proposed modifications.
arXiv Detail & Related papers (2023-01-27T15:49:50Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - A Method of Query Graph Reranking for Knowledge Base Question Answering [2.367061689316429]
This paper presents a novel reranking method to better choose the optimal query graph, a sub-graph of knowledge graph, to retrieve the answer for an input question in Knowledge Base Question Answering (KBQA)
Existing methods suffer from a severe problem that there is a significant gap between top-1 performance and the oracle score of top-n results.
arXiv Detail & Related papers (2022-04-27T09:57:54Z) - Semantic Structure based Query Graph Prediction for Question Answering
over Knowledge Graph [5.5332967798665305]
This paper focuses on query graph generation from natural language questions.
Existing approaches for query graph generation ignore the semantic structure of a question.
We develop a novel Structure-BERT to predict the semantic structure of a question.
arXiv Detail & Related papers (2022-04-15T20:35:00Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs.
Online inference is then performed to solve the AS2 task on unseen queries.
arXiv Detail & Related papers (2022-02-16T05:59:53Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Learning Query Expansion over the Nearest Neighbor Graph [94.80212602202518]
Graph Query Expansion (GQE) is presented, which is learned in a supervised manner and performs aggregation over an extended neighborhood of the query.
The technique achieves state-of-the-art results over known benchmarks.
arXiv Detail & Related papers (2021-12-05T19:48:42Z) - Graph-augmented Learning to Rank for Querying Large-scale Knowledge
Graph [34.774049199809426]
Knowledge graph question answering (i.e., KGQA) based on information retrieval aims to answer a question by retrieving answer from a large-scale knowledge graph.
We first propose to partition the retrieved KSG to several smaller sub-KSGs via a new subgraph partition algorithm.
We then present a graph-augmented learning to rank model to select the top-ranked sub-KSGs from them.
arXiv Detail & Related papers (2021-11-20T08:27:37Z) - RnG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base
Question Answering [57.94658176442027]
We present RnG-KBQA, a Rank-and-Generate approach for KBQA.
We achieve new state-of-the-art results on GrailQA and WebQSP datasets.
arXiv Detail & Related papers (2021-09-17T17:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.