Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing
- URL: http://arxiv.org/abs/2204.12679v1
- Date: Wed, 27 Apr 2022 03:20:07 GMT
- Title: Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing
- Authors: Wang Xu, Kehai Chen, Lili Mou, Tiejun Zhao
- Abstract summary: Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
- Score: 52.069206266557266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction (DocRE) aims to determine the relation
between two entities from a document of multiple sentences. Recent studies
typically represent the entire document by sequence- or graph-based models to
predict the relations of all entity pairs. However, we find that such a model
is not robust and exhibits bizarre behaviors: it predicts correctly when an
entire test document is fed as input, but errs when non-evidence sentences are
removed. To this end, we propose a Sentence Importance Estimation and Focusing
(SIEF) framework for DocRE, where we design a sentence importance score and a
sentence focusing loss, encouraging DocRE models to focus on evidence
sentences. Experimental results on two domains show that our SIEF not only
improves overall performance, but also makes DocRE models more robust.
Moreover, SIEF is a general framework, shown to be effective when combined with
a variety of base DocRE models.
Related papers
- GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text
Documents via Semantic-Oriented Hierarchical Graphs [79.0426838808629]
We propose TAT-DQA, i.e. to answer the question over a visually-rich table-text document.
Specifically, we propose a novel Doc2SoarGraph framework with enhanced discrete reasoning capability.
We conduct extensive experiments on TAT-DQA dataset, and the results show that our proposed framework outperforms the best baseline model by 17.73% and 16.91% in terms of Exact Match (EM) and F1 score respectively on the test set.
arXiv Detail & Related papers (2023-05-03T07:30:32Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
Document Augmentation for dense Retrieval (DAR) framework augments the representations of documents with their Dense Augmentation and perturbations.
We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
arXiv Detail & Related papers (2022-03-15T09:07:38Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - Eider: Evidence-enhanced Document-level Relation Extraction [56.71004595444816]
Document-level relation extraction (DocRE) aims at extracting semantic relations among entity pairs in a document.
We propose a three-stage evidence-enhanced DocRE framework consisting of joint relation and evidence extraction, evidence-centered relation extraction (RE), and fusion of extraction results.
arXiv Detail & Related papers (2021-06-16T09:43:16Z) - Discriminative Reasoning for Document-level Relation Extraction [28.593318203728963]
Document-level relation extraction (DocRE) models implicitly model the reasoning skill related to the relation between one entity pair in a document.
We propose a novel discriminative reasoning framework to explicitly model the paths of these reasoning skills between each entity pair in this document.
Experimental results show that our method outperforms the previous state-of-the-art performance on the large-scale DocRE dataset.
arXiv Detail & Related papers (2021-06-03T03:09:38Z) - Entity and Evidence Guided Relation Extraction for DocRED [33.69481141963074]
We pro-pose a joint training frameworkE2GRE(Entity and Evidence Guided Relation Extraction)for this task.
We introduce entity-guided sequences as inputs to a pre-trained language model (e.g. BERT, RoBERTa)
These entity-guided sequences help a pre-trained language model (LM) to focus on areas of the document related to the entity.
We evaluate our E2GRE approach on DocRED, a recently released large-scale dataset for relation extraction.
arXiv Detail & Related papers (2020-08-27T17:41:23Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.