Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling
- URL: http://arxiv.org/abs/2204.12681v2
- Date: Thu, 16 May 2024 15:00:38 GMT
- Title: Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling
- Authors: Yizhe Yang, Heyan Huang, Yang Gao, Jiawei Li and,
- Abstract summary: The knowledge-grounded dialogue task aims to generate responses that convey information from given knowledge documents.
We propose a novel graph structure, Grounded Graph, that models the semantic structure of both dialogue and knowledge.
We also propose a Grounded Graph Aware Transformer to enhance knowledge-grounded response generation.
- Score: 43.0554223015728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The knowledge-grounded dialogue task aims to generate responses that convey information from given knowledge documents. However, it is a challenge for the current sequence-based model to acquire knowledge from complex documents and integrate it to perform correct responses without the aid of an explicit semantic structure. To address these issues, we propose a novel graph structure, Grounded Graph ($G^2$), that models the semantic structure of both dialogue and knowledge to facilitate knowledge selection and integration for knowledge-grounded dialogue generation. We also propose a Grounded Graph Aware Transformer ($G^2AT$) model that fuses multi-forms knowledge (both sequential and graphic) to enhance knowledge-grounded response generation. Our experiments results show that our proposed model outperforms the previous state-of-the-art methods with more than 10\% gains in response generation and nearly 20\% improvement in factual consistency. Further, our model reveals good generalization ability and robustness. By incorporating semantic structures as prior knowledge in deep neural networks, our model provides an effective way to aid language generation.
Related papers
- G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Learning to Express in Knowledge-Grounded Conversation [62.338124154016825]
We consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part.
We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response.
arXiv Detail & Related papers (2022-04-12T13:43:47Z) - Grounding Dialogue Systems via Knowledge Graph Aware Decoding with
Pre-trained Transformers [3.477557431978457]
Knowledge Graphs can potentially facilitate a dialogue system to produce knowledge grounded responses.
This paper proposes a novel architecture for integrating KGs into the response generation process by training a BERT model.
The k-hop subgraph of the KG is incorporated into the model during training and inference using Graph Laplacian.
arXiv Detail & Related papers (2021-03-30T12:36:00Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs.
One is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history.
We address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue.
arXiv Detail & Related papers (2020-10-04T00:04:40Z) - Language Generation with Multi-Hop Reasoning on Commonsense Knowledge
Graph [124.45799297285083]
We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation.
We propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph.
arXiv Detail & Related papers (2020-09-24T13:55:32Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Knowledge-graph based Proactive Dialogue Generation with Improved
Meta-Learning [0.0]
We propose a knowledge graph based proactive dialogue generation model (KgDg) with three components.
For knowledge triplets embedding and selection, we formulate it as a problem of sentence embedding to better capture semantic information.
Our improved MAML algorithm is capable of learning general features from a limited number of knowledge graphs.
arXiv Detail & Related papers (2020-04-19T08:41:12Z) - Sequential Latent Knowledge Selection for Knowledge-Grounded Dialogue [51.513276162736844]
We propose a sequential latent variable model as the first approach to this matter.
The model named sequential knowledge transformer (SKT) can keep track of the prior and posterior distribution over knowledge.
arXiv Detail & Related papers (2020-02-18T11:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.