Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation
Learning for Action Recognition Pre-Training
- URL: http://arxiv.org/abs/2204.12729v1
- Date: Wed, 27 Apr 2022 06:51:31 GMT
- Title: Human-Centered Prior-Guided and Task-Dependent Multi-Task Representation
Learning for Action Recognition Pre-Training
- Authors: Guanhong Wang, Keyu Lu, Yang Zhou, Zhanhao He and Gaoang Wang
- Abstract summary: We propose a novel action recognition pre-training framework, which exploits human-centered prior knowledge that generates more informative representation.
Specifically, we distill knowledge from a human parsing model to enrich the semantic capability of representation.
In addition, we combine knowledge distillation with contrastive learning to constitute a task-dependent multi-task framework.
- Score: 8.571437792425417
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, much progress has been made for self-supervised action recognition.
Most existing approaches emphasize the contrastive relations among videos,
including appearance and motion consistency. However, two main issues remain
for existing pre-training methods: 1) the learned representation is neutral and
not informative for a specific task; 2) multi-task learning-based pre-training
sometimes leads to sub-optimal solutions due to inconsistent domains of
different tasks. To address the above issues, we propose a novel action
recognition pre-training framework, which exploits human-centered prior
knowledge that generates more informative representation, and avoids the
conflict between multiple tasks by using task-dependent representations.
Specifically, we distill knowledge from a human parsing model to enrich the
semantic capability of representation. In addition, we combine knowledge
distillation with contrastive learning to constitute a task-dependent
multi-task framework. We achieve state-of-the-art performance on two popular
benchmarks for action recognition task, i.e., UCF101 and HMDB51, verifying the
effectiveness of our method.
Related papers
- The impact of Compositionality in Zero-shot Multi-label action recognition for Object-based tasks [4.971065912401385]
We propose Dual-VCLIP, a unified approach for zero-shot multi-label action recognition.
Dual-VCLIP enhances VCLIP, a zero-shot action recognition method, with the DualCoOp method for multi-label image classification.
We validate our method on the Charades dataset that includes a majority of object-based actions.
arXiv Detail & Related papers (2024-05-14T15:28:48Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
We propose a self-supervised task inference approach to continually learn new tasks.
We use a behavior-matching self-supervised learning objective to train a novel Task Inference Network (TINet)
A multi-task policy is built on top of the TINet and trained with reinforcement learning to optimize performance over tasks.
arXiv Detail & Related papers (2023-09-10T09:32:35Z) - Identifying Auxiliary or Adversarial Tasks Using Necessary Condition
Analysis for Adversarial Multi-task Video Understanding [34.75145779372538]
We propose a generalized notion of multi-task learning by incorporating both auxiliary tasks that the model should perform well on and adversarial tasks that the model should not perform well on.
Our novel proposed framework, Adversarial Multi-Task Neural Networks (AMT), penalizes adversarial tasks, determined by NCA to be scene recognition.
We show that our approach improves accuracy by 3% and encourages the model to attend to action features instead of correlation-biasing scene features.
arXiv Detail & Related papers (2022-08-22T06:26:11Z) - Learning Multi-Task Transferable Rewards via Variational Inverse
Reinforcement Learning [10.782043595405831]
We extend an empowerment-based regularization technique to situations with multiple tasks based on the framework of a generative adversarial network.
Under the multitask environments with unknown dynamics, we focus on learning a reward and policy from unlabeled expert examples.
Our proposed method derives the variational lower bound of the situational mutual information to optimize it.
arXiv Detail & Related papers (2022-06-19T22:32:41Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
Multi-Task Learning uses correlated tasks to improve performance generalization.
Tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined.
We propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation.
arXiv Detail & Related papers (2022-04-14T01:52:34Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
Multi-task learning often suffers from negative transfer, sharing information that should be task-specific.
This is done by using proto-policies as modules to divide the tasks into simple sub-behaviours that can be shared.
We also demonstrate its ability to autonomously divide the tasks into both shared and task-specific sub-behaviours.
arXiv Detail & Related papers (2022-03-28T15:53:17Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
A general-purpose robot should be able to master a wide range of tasks and quickly learn a novel one by leveraging past experiences.
One-shot imitation learning (OSIL) approaches this goal by training an agent with (pairs of) expert demonstrations.
We push for a higher level of generalization ability by investigating a more ambitious multi-task setup.
arXiv Detail & Related papers (2021-10-26T05:49:46Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Auxiliary Learning by Implicit Differentiation [54.92146615836611]
Training neural networks with auxiliary tasks is a common practice for improving the performance on a main task of interest.
Here, we propose a novel framework, AuxiLearn, that targets both challenges based on implicit differentiation.
First, when useful auxiliaries are known, we propose learning a network that combines all losses into a single coherent objective function.
Second, when no useful auxiliary task is known, we describe how to learn a network that generates a meaningful, novel auxiliary task.
arXiv Detail & Related papers (2020-06-22T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.