Attention Based Neural Networks for Wireless Channel Estimation
- URL: http://arxiv.org/abs/2204.13465v1
- Date: Thu, 28 Apr 2022 12:54:19 GMT
- Title: Attention Based Neural Networks for Wireless Channel Estimation
- Authors: Dianxin Luan, John Thompson
- Abstract summary: We propose a new hybrid encoder-decoder structure (called HA02) for the first time which exploits the attention mechanism to focus on the most important input information.
In particular, we implement a transformer encoder block as the encoder to achieve the sparsity in the input features and a residual neural network as the decoder respectively.
Our simulations show superior estimation performance compared with other candidate neural network methods for channel estimation.
- Score: 1.0499453838486013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we deploy the self-attention mechanism to achieve improved
channel estimation for orthogonal frequency-division multiplexing waveforms in
the downlink. Specifically, we propose a new hybrid encoder-decoder structure
(called HA02) for the first time which exploits the attention mechanism to
focus on the most important input information. In particular, we implement a
transformer encoder block as the encoder to achieve the sparsity in the input
features and a residual neural network as the decoder respectively, inspired by
the success of the attention mechanism. Using 3GPP channel models, our
simulations show superior estimation performance compared with other candidate
neural network methods for channel estimation.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Channelformer: Attention based Neural Solution for Wireless Channel
Estimation and Effective Online Training [1.0499453838486013]
We propose an encoder-decoder neural architecture (called Channelformer) to achieve improved channel estimation.
We employ multi-head attention in the encoder and a residual convolutional neural architecture as the decoder.
We also propose an effective online training method based on the fifth generation (5G) new radio (NR) configuration for the modern communication systems.
arXiv Detail & Related papers (2023-02-08T23:18:23Z) - Streaming Audio-Visual Speech Recognition with Alignment Regularization [69.30185151873707]
We propose a streaming AV-ASR system based on a hybrid connectionist temporal classification ( CTC)/attention neural network architecture.
The proposed AV-ASR model achieves WERs of 2.0% and 2.6% on the Lip Reading Sentences 3 dataset in an offline and online setup.
arXiv Detail & Related papers (2022-11-03T20:20:47Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - DeepTx: Deep Learning Beamforming with Channel Prediction [8.739166282613118]
In this study, we focus on machine learning algorithms for the transmitter.
We consider beamforming and propose a CNN which, for a given uplink channel estimate as input, outputs downlink channel information to be used for beamforming.
The main task of the neural network is to predict the channel evolution between uplink and downlink slots, but it can also learn to handle inefficiencies and errors in the whole chain.
arXiv Detail & Related papers (2022-02-16T11:19:54Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO [30.201881862681972]
We design a latent ordinary differential equation (ODE)-based network to learn the mapping function from the partial uplink channels to the full downlink ones at the base station.
Simulation results show that the designed network can efficiently infer the full downlink channels from the partial uplink ones.
arXiv Detail & Related papers (2021-08-09T11:12:46Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.