A Bottom-Up End-User Intelligent Assistant Approach to Empower Gig
Workers against AI Inequality
- URL: http://arxiv.org/abs/2204.13842v1
- Date: Fri, 29 Apr 2022 01:30:30 GMT
- Title: A Bottom-Up End-User Intelligent Assistant Approach to Empower Gig
Workers against AI Inequality
- Authors: Toby Jia-Jun Li, Yuwen Lu, Jaylexia Clark, Meng Chen, Victor Cox, Meng
Jiang, Yang Yang, Tamara Kay, Danielle Wood, Jay Brockman
- Abstract summary: We argue that a bottom-up approach that empowers individual workers to access AI-enabled work planning support and share data among a group of workers is a practical way to bridge AI inequality in gig work under the current paradigm of privately owned platforms.
This position paper articulates a set of research challenges, potential approaches, and community engagement opportunities, seeking to start a dialogue on this important research topic in the interdisciplinary CHIWORK community.
- Score: 16.121867459980137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing inequality in gig work between workers and platforms has become a
critical social issue as gig work plays an increasingly prominent role in the
future of work. The AI inequality is caused by (1) the technology divide in who
has access to AI technologies in gig work; and (2) the data divide in who owns
the data in gig work leads to unfair working conditions, growing pay gap,
neglect of workers' diverse preferences, and workers' lack of trust in the
platforms. In this position paper, we argue that a bottom-up approach that
empowers individual workers to access AI-enabled work planning support and
share data among a group of workers through a network of end-user-programmable
intelligent assistants is a practical way to bridge AI inequality in gig work
under the current paradigm of privately owned platforms. This position paper
articulates a set of research challenges, potential approaches, and community
engagement opportunities, seeking to start a dialogue on this important
research topic in the interdisciplinary CHIWORK community.
Related papers
- Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
One-third of U.S. employment is highly exposed to AI, primarily in high-skill jobs.
This exposure correlates positively with employment and wage growth from 2019 to 2023.
arXiv Detail & Related papers (2024-07-27T08:14:18Z) - The Impact of AI on Perceived Job Decency and Meaningfulness: A Case Study [3.9134031118910264]
This paper explores the impact of AI on job decency and meaningfulness in workplaces.
Findings reveal that respondents visualize a workplace where humans continue to play a dominant role, even with the introduction of advanced AIs.
respondents believe that the introduction of AI will maintain or potentially increase overall job satisfaction.
arXiv Detail & Related papers (2024-06-20T12:52:57Z) - The impact of generative artificial intelligence on socioeconomic inequalities and policy making [1.5156317247732694]
Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities.
Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems.
In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation.
In education, it offers personalized learning, but may widen the digital divide.
In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities.
arXiv Detail & Related papers (2023-12-16T10:37:22Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
We interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI.
Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons.
arXiv Detail & Related papers (2023-04-17T15:30:05Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Open Problems in Cooperative AI [21.303564222227727]
Research aims to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems.
This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms.
arXiv Detail & Related papers (2020-12-15T21:39:50Z) - Data, Power and Bias in Artificial Intelligence [5.124256074746721]
Artificial Intelligence has the potential to exacerbate societal bias and set back decades of advances in equal rights and civil liberty.
Data used to train machine learning algorithms may capture social injustices, inequality or discriminatory attitudes that may be learned and perpetuated in society.
This paper reviews ongoing work to ensure data justice, fairness and bias mitigation in AI systems from different domains.
arXiv Detail & Related papers (2020-07-28T16:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.