Detoxifying Language Models with a Toxic Corpus
- URL: http://arxiv.org/abs/2205.00320v1
- Date: Sat, 30 Apr 2022 18:25:18 GMT
- Title: Detoxifying Language Models with a Toxic Corpus
- Authors: Yoon A Park, Frank Rudzicz
- Abstract summary: We propose to use toxic corpus as an additional resource to reduce the toxicity.
Our result shows that toxic corpus can indeed help to reduce the toxicity of the language generation process substantially.
- Score: 16.7345472998388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing studies have investigated the tendency of autoregressive language
models to generate contexts that exhibit undesired biases and toxicity. Various
debiasing approaches have been proposed, which are primarily categorized into
data-based and decoding-based. In our study, we investigate the ensemble of the
two debiasing paradigms, proposing to use toxic corpus as an additional
resource to reduce the toxicity. Our result shows that toxic corpus can indeed
help to reduce the toxicity of the language generation process substantially,
complementing the existing debiasing methods.
Related papers
- Unveiling the Implicit Toxicity in Large Language Models [77.90933074675543]
The open-endedness of large language models (LLMs) combined with their impressive capabilities may lead to new safety issues when being exploited for malicious use.
We show that LLMs can generate diverse implicit toxic outputs that are exceptionally difficult to detect via simply zero-shot prompting.
We propose a reinforcement learning (RL) based attacking method to further induce the implicit toxicity in LLMs.
arXiv Detail & Related papers (2023-11-29T06:42:36Z) - CMD: a framework for Context-aware Model self-Detoxification [22.842468869653818]
Text detoxification aims to minimize the risk of language models producing toxic content.
Existing detoxification methods fail to achieve a decent balance between detoxification effectiveness and generation quality.
We introduce a Context-aware Model self-Detoxification(CMD) framework that pays attention to both the context and the detoxification process.
arXiv Detail & Related papers (2023-08-16T11:50:38Z) - Leashing the Inner Demons: Self-Detoxification for Language Models [13.576289320208511]
Language models (LMs) can reproduce (or amplify) toxic language seen during training.
We analyze the impact of prompts, decoding strategies and training corpora on the output.
We propose a simple yet effective method for language models to "detoxify" themselves without an additional large corpus or external discriminator.
arXiv Detail & Related papers (2022-03-06T23:55:12Z) - Reward Modeling for Mitigating Toxicity in Transformer-based Language
Models [0.0]
Transformer-based language models are able to generate fluent text and be efficiently adapted across various natural language generation tasks.
Language models that are pretrained on large unlabeled web text corpora have been shown to suffer from degenerating toxic content and social bias behaviors.
We propose Reinforce-Detoxify; A reinforcement learning-based method for mitigating toxicity in language models.
arXiv Detail & Related papers (2022-02-19T19:26:22Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - Morphologically Aware Word-Level Translation [82.59379608647147]
We propose a novel morphologically aware probability model for bilingual lexicon induction.
Our model exploits the basic linguistic intuition that the lexeme is the key lexical unit of meaning.
arXiv Detail & Related papers (2020-11-15T17:54:49Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z) - A Comparative Study of Lexical Substitution Approaches based on Neural
Language Models [117.96628873753123]
We present a large-scale comparative study of popular neural language and masked language models.
We show that already competitive results achieved by SOTA LMs/MLMs can be further improved if information about the target word is injected properly.
arXiv Detail & Related papers (2020-05-29T18:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.