Preserve Pre-trained Knowledge: Transfer Learning With Self-Distillation
For Action Recognition
- URL: http://arxiv.org/abs/2205.00506v1
- Date: Sun, 1 May 2022 16:31:25 GMT
- Title: Preserve Pre-trained Knowledge: Transfer Learning With Self-Distillation
For Action Recognition
- Authors: Yang Zhou, Zhanhao He, Keyu Lu, Guanhong Wang, Gaoang Wang
- Abstract summary: We propose a novel transfer learning approach that combines self-distillation in fine-tuning to preserve knowledge from the pre-trained model learned from the large-scale dataset.
Specifically, we fix the encoder from the last epoch as the teacher model to guide the training of the encoder from the current epoch in the transfer learning.
- Score: 8.571437792425417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video-based action recognition is one of the most popular topics in computer
vision. With recent advances of selfsupervised video representation learning
approaches, action recognition usually follows a two-stage training framework,
i.e., self-supervised pre-training on large-scale unlabeled sets and transfer
learning on a downstream labeled set. However, catastrophic forgetting of the
pre-trained knowledge becomes the main issue in the downstream transfer
learning of action recognition, resulting in a sub-optimal solution. In this
paper, to alleviate the above issue, we propose a novel transfer learning
approach that combines self-distillation in fine-tuning to preserve knowledge
from the pre-trained model learned from the large-scale dataset. Specifically,
we fix the encoder from the last epoch as the teacher model to guide the
training of the encoder from the current epoch in the transfer learning. With
such a simple yet effective learning strategy, we outperform state-of-the-art
methods on widely used UCF101 and HMDB51 datasets in action recognition task.
Related papers
- PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative
Priors [59.93972277761501]
We show that we can learn highly informative posteriors from the source task, through supervised or self-supervised approaches.
This simple modular approach enables significant performance gains and more data-efficient learning on a variety of downstream classification and segmentation tasks.
arXiv Detail & Related papers (2022-05-20T16:19:30Z) - Reinforcement Learning with Action-Free Pre-Training from Videos [95.25074614579646]
We introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos.
Our framework significantly improves both final performances and sample-efficiency of vision-based reinforcement learning.
arXiv Detail & Related papers (2022-03-25T19:44:09Z) - Class-Incremental Learning for Action Recognition in Videos [44.923719189467164]
We tackle catastrophic forgetting problem in the context of class-incremental learning for video recognition.
Our framework addresses this challenging task by introducing time-channel importance maps and exploiting the importance maps for learning the representations of incoming examples.
We evaluate the proposed approach on brand-new splits of class-incremental action recognition benchmarks constructed upon the UCF101, HMDB51, and Something-Something V2 datasets.
arXiv Detail & Related papers (2022-03-25T12:15:49Z) - Learning Actor-centered Representations for Action Localization in
Streaming Videos using Predictive Learning [18.757368441841123]
Event perception tasks such as recognizing and localizing actions in streaming videos are essential for tackling visual understanding tasks.
We tackle the problem of learning textitactor-centered representations through the notion of continual hierarchical predictive learning.
Inspired by cognitive theories of event perception, we propose a novel, self-supervised framework.
arXiv Detail & Related papers (2021-04-29T06:06:58Z) - Incremental Learning from Low-labelled Stream Data in Open-Set Video
Face Recognition [0.0]
We propose a novel incremental learning approach which combines a deep features encoder with an Open-Set Dynamic Ensembles of SVM.
Our method can use unsupervised operational data to enhance recognition.
Results show a benefit of up to 15% F1-score increase respect to non-adaptive state-of-the-art methods.
arXiv Detail & Related papers (2020-12-17T13:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.