Generalized Reference Kernel for One-class Classification
- URL: http://arxiv.org/abs/2205.00534v2
- Date: Wed, 4 May 2022 05:40:09 GMT
- Title: Generalized Reference Kernel for One-class Classification
- Authors: Jenni Raitoharju and Alexandros Iosifidis
- Abstract summary: We formulate a new generalized reference kernel to improve the original base kernel using a set of reference vectors.
Our analysis and experimental results show that the new formulation provides approaches to regularize, adjust the rank, and incorporate additional information into the kernel itself.
- Score: 100.53532594448048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we formulate a new generalized reference kernel hoping to
improve the original base kernel using a set of reference vectors. Depending on
the selected reference vectors, our formulation shows similarities to
approximate kernels, random mappings, and Non-linear Projection Trick. Focusing
on small-scale one-class classification, our analysis and experimental results
show that the new formulation provides approaches to regularize, adjust the
rank, and incorporate additional information into the kernel itself, leading to
improved one-class classification accuracy.
Related papers
- Fast and Scalable Multi-Kernel Encoder Classifier [4.178980693837599]
The proposed method facilitates fast and scalable kernel matrix embedding, and seamlessly integrates multiple kernels to enhance the learning process.
Our theoretical analysis offers a population-level characterization of this approach using random variables.
arXiv Detail & Related papers (2024-06-04T10:34:40Z) - Prompt-based Grouping Transformer for Nucleus Detection and
Classification [70.55961378096116]
nuclei detection and classification can produce effective information for disease diagnosis.
Most existing methods classify nuclei independently or do not make full use of the semantic similarity between nuclei and their grouping features.
We propose a novel end-to-end nuclei detection and classification framework based on a grouping transformer-based classifier.
arXiv Detail & Related papers (2023-10-22T04:50:48Z) - An Exact Kernel Equivalence for Finite Classification Models [1.4777718769290527]
We compare our exact representation to the well-known Neural Tangent Kernel (NTK) and discuss approximation error relative to the NTK.
We use this exact kernel to show that our theoretical contribution can provide useful insights into the predictions made by neural networks.
arXiv Detail & Related papers (2023-08-01T20:22:53Z) - Semi-Supervised Laplace Learning on Stiefel Manifolds [48.3427853588646]
We develop the framework Sequential Subspace for graph-based, supervised samples at low-label rates.
We achieves that our methods at extremely low rates, and high label rates.
arXiv Detail & Related papers (2023-07-31T20:19:36Z) - Variational Autoencoder Kernel Interpretation and Selection for
Classification [59.30734371401315]
This work proposed kernel selection approaches for probabilistic classifiers based on features produced by the convolutional encoder of a variational autoencoder.
In the proposed implementation, each latent variable was sampled from the distribution associated with a single kernel of the last encoder's convolution layer, as an individual distribution was created for each kernel.
choosing relevant features on the sampled latent variables makes it possible to perform kernel selection, filtering the uninformative features and kernels.
arXiv Detail & Related papers (2022-09-10T17:22:53Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - Learning Compositional Sparse Gaussian Processes with a Shrinkage Prior [26.52863547394537]
We present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior.
Our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.
arXiv Detail & Related papers (2020-12-21T13:41:15Z) - Generalized vec trick for fast learning of pairwise kernel models [3.867363075280544]
We present a comprehensive review of pairwise kernels, that have been proposed for incorporating prior knowledge about the relationship between the objects.
We show how all the reviewed kernels can be expressed as sums of Kronecker products, allowing the use of generalized vec trick for speeding up their computation.
arXiv Detail & Related papers (2020-09-02T13:27:51Z) - Learning to Select Base Classes for Few-shot Classification [96.92372639495551]
We use the Similarity Ratio as an indicator for the generalization performance of a few-shot model.
We then formulate the base class selection problem as a submodular optimization problem over Similarity Ratio.
arXiv Detail & Related papers (2020-04-01T09:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.