WeatherBench Probability: A benchmark dataset for probabilistic
medium-range weather forecasting along with deep learning baseline models
- URL: http://arxiv.org/abs/2205.00865v1
- Date: Mon, 2 May 2022 12:49:05 GMT
- Title: WeatherBench Probability: A benchmark dataset for probabilistic
medium-range weather forecasting along with deep learning baseline models
- Authors: Sagar Garg, Stephan Rasp, Nils Thuerey
- Abstract summary: WeatherBench is a benchmark dataset for medium-range weather forecasting of geopotential, temperature and precipitation.
WeatherBench Probability extends this to probabilistic forecasting by adding a set of established probabilistic verification metrics.
- Score: 22.435002906710803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: WeatherBench is a benchmark dataset for medium-range weather forecasting of
geopotential, temperature and precipitation, consisting of preprocessed data,
predefined evaluation metrics and a number of baseline models. WeatherBench
Probability extends this to probabilistic forecasting by adding a set of
established probabilistic verification metrics (continuous ranked probability
score, spread-skill ratio and rank histograms) and a state-of-the-art
operational baseline using the ECWMF IFS ensemble forecast. In addition, we
test three different probabilistic machine learning methods -- Monte Carlo
dropout, parametric prediction and categorical prediction, in which the
probability distribution is discretized. We find that plain Monte Carlo dropout
severely underestimates uncertainty. The parametric and categorical models both
produce fairly reliable forecasts of similar quality. The parametric models
have fewer degrees of freedom while the categorical model is more flexible when
it comes to predicting non-Gaussian distributions. None of the models are able
to match the skill of the operational IFS model. We hope that this benchmark
will enable other researchers to evaluate their probabilistic approaches.
Related papers
- Probabilistic Weather Forecasting with Hierarchical Graph Neural Networks [17.64833210797824]
We propose a probabilistic weather forecasting model called Graph-EFM.
The model combines a flexible latent-variable formulation with the successful graph-based forecasting framework.
Ensemble forecasts from Graph-EFM achieve equivalent or lower errors than comparable deterministic models.
arXiv Detail & Related papers (2024-06-07T09:01:25Z) - Deterministic Guidance Diffusion Model for Probabilistic Weather
Forecasting [16.370286635698903]
We introduce the textbftextitDeterministic textbftextitGuidance textbftextitDiffusion textbftextitModel (DGDM) for probabilistic weather forecasting.
arXiv Detail & Related papers (2023-12-05T15:03:15Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.