FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive
Neighborhood Aggregation
- URL: http://arxiv.org/abs/2205.00905v1
- Date: Mon, 2 May 2022 13:33:43 GMT
- Title: FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive
Neighborhood Aggregation
- Authors: Yuansheng Wang, Wangbin Sun, Kun Xu, Zulun Zhu, Liang Chen, Zibin
Zheng
- Abstract summary: We argue that a better contrastive scheme should be tailored to the characteristics of graph neural networks.
By constructing weighted-aggregated and non-aggregated neighborhood information as positive and negative samples respectively, FastGCL identifies the potential semantic information of data.
Experiments have been conducted on node classification and graph classification tasks, showing that FastGCL has competitive classification performance and significant training speedup.
- Score: 26.07819501316758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph contrastive learning (GCL), as a popular approach to graph
self-supervised learning, has recently achieved a non-negligible effect. To
achieve superior performance, the majority of existing GCL methods elaborate on
graph data augmentation to construct appropriate contrastive pairs. However,
existing methods place more emphasis on the complex graph data augmentation
which requires extra time overhead, and pay less attention to developing
contrastive schemes specific to encoder characteristics. We argue that a better
contrastive scheme should be tailored to the characteristics of graph neural
networks (e.g., neighborhood aggregation) and propose a simple yet effective
method named FastGCL. Specifically, by constructing weighted-aggregated and
non-aggregated neighborhood information as positive and negative samples
respectively, FastGCL identifies the potential semantic information of data
without disturbing the graph topology and node attributes, resulting in faster
training and convergence speeds. Extensive experiments have been conducted on
node classification and graph classification tasks, showing that FastGCL has
competitive classification performance and significant training speedup
compared to existing state-of-the-art methods.
Related papers
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - Modularity aided consistent attributed graph clustering via coarsening [6.522020196906943]
Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities.
We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique.
Our algorithm seamlessly integrates graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance.
arXiv Detail & Related papers (2024-07-09T10:42:19Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - HomoGCL: Rethinking Homophily in Graph Contrastive Learning [64.85392028383164]
HomoGCL is a model-agnostic framework to expand the positive set using neighbor nodes with neighbor-specific significances.
We show that HomoGCL yields multiple state-of-the-art results across six public datasets.
arXiv Detail & Related papers (2023-06-16T04:06:52Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
Graph neural clustering network (GNN) is a powerful learning approach for graph-based recommender systems.
In this paper, we propose a simple yet effective graph contrastive learning paradigm LightGCL.
arXiv Detail & Related papers (2023-02-16T10:16:21Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
We present a self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short)
Our algorithm builds flexible contextual representations with contextual scopes by controlling the power of an adjacency matrix.
Based on representations from both local and contextual scopes, distL optimises a very simple contrastive loss function for graph representation learning.
arXiv Detail & Related papers (2022-10-17T07:16:17Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.