Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Object
Detection
- URL: http://arxiv.org/abs/2205.01142v2
- Date: Thu, 5 May 2022 03:38:39 GMT
- Title: Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Object
Detection
- Authors: Xiaofang Wang, Kris M. Kitani
- Abstract summary: This work is to conduct a cost-aware evaluation of LiDAR-based 3D object detectors.
Specifically, we focus on SECOND, a simple grid-based one-stage detector.
We compare the family of scaled SECOND with recent 3D detection methods, such as Voxel R-CNN and PV-RCNN++.
- Score: 34.34668878632354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considerable research efforts have been devoted to LiDAR-based 3D object
detection and its empirical performance has been significantly improved. While
the progress has been encouraging, we observe an overlooked issue: it is not
yet common practice to compare different 3D detectors under the same cost,
e.g., inference latency. This makes it difficult to quantify the true
performance gain brought by recently proposed architecture designs. The goal of
this work is to conduct a cost-aware evaluation of LiDAR-based 3D object
detectors. Specifically, we focus on SECOND, a simple grid-based one-stage
detector, and analyze its performance under different costs by scaling its
original architecture. Then we compare the family of scaled SECOND with recent
3D detection methods, such as Voxel R-CNN and PV-RCNN++. The results are
surprising. We find that, if allowed to use the same latency, SECOND can match
the performance of PV-RCNN++, the current state-of-the-art method on the Waymo
Open Dataset. Scaled SECOND also easily outperforms many recent 3D detection
methods published during the past year. We recommend future research control
the inference cost in their empirical comparison and include the family of
scaled SECOND as a strong baseline when presenting novel 3D detection methods.
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - GOOD: General Optimization-based Fusion for 3D Object Detection via
LiDAR-Camera Object Candidates [10.534984939225014]
3D object detection serves as the core basis of the perception tasks in autonomous driving.
Good is a general optimization-based fusion framework that can achieve satisfying detection without training additional models.
Experiments on both nuScenes and KITTI datasets are carried out and the results show that GOOD outperforms by 9.1% on mAP score compared with PointPillars.
arXiv Detail & Related papers (2023-03-17T07:05:04Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - LiDAR R-CNN: An Efficient and Universal 3D Object Detector [20.17906188581305]
LiDAR-based 3D detection in point cloud is essential in the perception system of autonomous driving.
We present LiDAR R-CNN, a second stage detector that can generally improve any existing 3D detector.
In particular, based on one variant of PointPillars, our method could achieve new state-of-the-art results with minor cost.
arXiv Detail & Related papers (2021-03-29T03:01:21Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth Estimationand 3D
Object Detection [3.5488685789514736]
SLS-Fusion is a new approach to fuse data from 4-beam LiDAR and a stereo camera via a neural network for depth estimation.
Since 4-beam LiDAR is cheaper than the well-known 64-beam LiDAR, this approach is also classified as a low-cost sensors-based method.
arXiv Detail & Related papers (2021-03-05T23:10:09Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
We propose a novel 3D object detector that can exploit both LIDAR as well as cameras to perform very accurate localization.
We design an end-to-end learnable architecture that exploits continuous convolutions to fuse image and LIDAR feature maps at different levels of resolution.
arXiv Detail & Related papers (2020-12-20T18:43:41Z) - Improving 3D Object Detection through Progressive Population Based
Augmentation [91.56261177665762]
We present the first attempt to automate the design of data augmentation policies for 3D object detection.
We introduce the Progressive Population Based Augmentation (PPBA) algorithm, which learns to optimize augmentation strategies by narrowing down the search space and adopting the best parameters discovered in previous iterations.
We find that PPBA may be up to 10x more data efficient than baseline 3D detection models without augmentation, highlighting that 3D detection models may achieve competitive accuracy with far fewer labeled examples.
arXiv Detail & Related papers (2020-04-02T05:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.