Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control
- URL: http://arxiv.org/abs/2205.02410v2
- Date: Mon, 9 May 2022 15:55:35 GMT
- Title: Dynamic Bayesian Network Auxiliary ABC-SMC for Hybrid Model Bayesian
Inference to Accelerate Biomanufacturing Process Mechanism Learning and
Robust Control
- Authors: Wei Xie, Keqi Wang, Hua Zheng, Ben Feng
- Abstract summary: We present a knowledge graph hybrid model characterizing complex causal interdependencies of underlying bioprocessing mechanisms.
It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and nonstationary dynamics.
We derive a posterior distribution model uncertainty, which can facilitate mechanism learning and support robust process control.
- Score: 2.727760379582405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driven by the critical needs of biomanufacturing 4.0, we present a
probabilistic knowledge graph hybrid model characterizing complex
spatial-temporal causal interdependencies of underlying bioprocessing
mechanisms. It can faithfully capture the important properties, including
nonlinear reactions, partially observed state, and nonstationary dynamics.
Given limited process observations, we derive a posterior distribution
quantifying model uncertainty, which can facilitate mechanism learning and
support robust process control. To avoid evaluation of intractable likelihood,
Approximate Bayesian Computation sampling with Sequential Monte Carlo (ABC-SMC)
is developed to approximate the posterior distribution. Given high stochastic
and model uncertainties, it is computationally expensive to match process
output trajectories. Therefore, we propose a linear Gaussian dynamic Bayesian
network (LG-DBN) auxiliary likelihood-based ABC-SMC algorithm. Through matching
observed and simulated summary statistics, the proposed approach can
dramatically reduce the computation cost and improve the posterior distribution
approximation.
Related papers
- Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
This paper develops an efficient Bayesian inference approach for partially observed enzymatic reaction network (SRN)
An interpretable linear noise approximation (LNA) metamodel is proposed to approximate the likelihood of observations.
An efficient posterior sampling approach is developed by utilizing the gradients of the derived likelihood to speed up the convergence of Markov Chain Monte Carlo.
arXiv Detail & Related papers (2024-05-05T01:54:21Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - BART-SIMP: a novel framework for flexible spatial covariate modeling and
prediction using Bayesian additive regression trees [0.0]
We investigate a novel combination of a Gaussian process spatial model and a Bayesian Additive Regression Tree (BART) model.
The computational burden of the approach is reduced by combining Markov chain Monte Carlo with the Integrated Nested Laplace Approximation (INLA) technique.
We study the performance of the method via simulations and use the model to predict anthropometric responses, collected via household cluster samples in Kenya.
arXiv Detail & Related papers (2023-09-23T05:35:17Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Scalable Stochastic Parametric Verification with Stochastic Variational
Smoothed Model Checking [1.5293427903448025]
Smoothed model checking (smMC) aims at inferring the satisfaction function over the entire parameter space from a limited set of observations.
In this paper, we exploit recent advances in probabilistic machine learning to push this limitation forward.
We compare the performances of smMC against those of SV-smMC by looking at the scalability, the computational efficiency and the accuracy of the reconstructed satisfaction function.
arXiv Detail & Related papers (2022-05-11T10:43:23Z) - Opportunities of Hybrid Model-based Reinforcement Learning for Cell
Therapy Manufacturing Process Development and Control [6.580930850408461]
Key challenges of cell therapy manufacturing include high complexity, high uncertainty, and very limited process data.
We propose a framework named "hybridRL" to efficiently guide process development and control.
In the empirical study, cell therapy manufacturing examples are used to demonstrate that the proposed hybrid-RL framework can outperform the classical deterministic mechanistic model assisted process optimization.
arXiv Detail & Related papers (2022-01-10T00:01:19Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
We introduce a new algorithm to explicitly consider time-invariant uncertainties in optimal control problems.
The main novelty in this paper is to use this combination in an efficient fashion to obtain mean and variance estimates of nonlinear transformations.
It is shown how to formulate both chance-constraints and a probabilistic objective for the optimal control problem.
arXiv Detail & Related papers (2021-03-09T14:25:08Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.