Assistive Recipe Editing through Critiquing
- URL: http://arxiv.org/abs/2205.02454v1
- Date: Thu, 5 May 2022 05:52:27 GMT
- Title: Assistive Recipe Editing through Critiquing
- Authors: Diego Antognini, Shuyang Li, Boi Faltings, Julian McAuley
- Abstract summary: RecipeCrit is a hierarchical denoising auto-encoder that edits recipes given ingredient-level critiques.
Our work's main innovation is our unsupervised critiquing module that allows users to edit recipes by interacting with the predicted ingredients.
- Score: 34.1050269670062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has recently been growing interest in the automatic generation of
cooking recipes that satisfy some form of dietary restrictions, thanks in part
to the availability of online recipe data. Prior studies have used pre-trained
language models, or relied on small paired recipe data (e.g., a recipe paired
with a similar one that satisfies a dietary constraint). However, pre-trained
language models generate inconsistent or incoherent recipes, and paired
datasets are not available at scale. We address these deficiencies with
RecipeCrit, a hierarchical denoising auto-encoder that edits recipes given
ingredient-level critiques. The model is trained for recipe completion to learn
semantic relationships within recipes. Our work's main innovation is our
unsupervised critiquing module that allows users to edit recipes by interacting
with the predicted ingredients; the system iteratively rewrites recipes to
satisfy users' feedback. Experiments on the Recipe1M recipe dataset show that
our model can more effectively edit recipes compared to strong
language-modeling baselines, creating recipes that satisfy user constraints and
are more correct, serendipitous, coherent, and relevant as measured by human
judges.
Related papers
- Large Language Models as Sous Chefs: Revising Recipes with GPT-3 [56.7155146252028]
We focus on recipes as an example of complex, diverse, and widely used instructions.
We develop a prompt grounded in the original recipe and ingredients list that breaks recipes down into simpler steps.
We also contribute an Amazon Mechanical Turk task that is carefully designed to reduce fatigue while collecting human judgment of the quality of recipe revisions.
arXiv Detail & Related papers (2023-06-24T14:42:43Z) - Counterfactual Recipe Generation: Exploring Compositional Generalization
in a Realistic Scenario [60.20197771545983]
We design the counterfactual recipe generation task, which asks models to modify a base recipe according to the change of an ingredient.
We collect a large-scale recipe dataset in Chinese for models to learn culinary knowledge.
Results show that existing models have difficulties in modifying the ingredients while preserving the original text style, and often miss actions that need to be adjusted.
arXiv Detail & Related papers (2022-10-20T17:21:46Z) - Cross-lingual Adaptation for Recipe Retrieval with Mixup [56.79360103639741]
Cross-modal recipe retrieval has attracted research attention in recent years, thanks to the availability of large-scale paired data for training.
This paper studies unsupervised domain adaptation for image-to-recipe retrieval, where recipes in source and target domains are in different languages.
A novel recipe mixup method is proposed to learn transferable embedding features between the two domains.
arXiv Detail & Related papers (2022-05-08T15:04:39Z) - SHARE: a System for Hierarchical Assistive Recipe Editing [5.508365014509761]
We introduce SHARE: a System for Hierarchical Assistive Recipe Editing to assist home cooks with dietary restrictions.
Our hierarchical recipe editor makes necessary substitutions to a recipe's ingredients list and re-writes the directions to make use of the new ingredients.
We introduce the novel RecipePairs dataset of 84K pairs of similar recipes in which one recipe satisfies one of seven dietary constraints.
arXiv Detail & Related papers (2021-05-17T22:38:07Z) - Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers
and Self-supervised Learning [17.42688184238741]
Cross-modal recipe retrieval has recently gained substantial attention due to the importance of food in people's lives.
We propose a simplified end-to-end model based on well established and high performing encoders for text and images.
Our proposed method achieves state-of-the-art performance in the cross-modal recipe retrieval task on the Recipe1M dataset.
arXiv Detail & Related papers (2021-03-24T10:17:09Z) - Structure-Aware Generation Network for Recipe Generation from Images [142.047662926209]
We investigate an open research task of generating cooking instructions based on only food images and ingredients.
Target recipes are long-length paragraphs and do not have annotations on structure information.
We propose a novel framework of Structure-aware Generation Network (SGN) to tackle the food recipe generation task.
arXiv Detail & Related papers (2020-09-02T10:54:25Z) - Multi-modal Cooking Workflow Construction for Food Recipes [147.4435186953995]
We build MM-ReS, the first large-scale dataset for cooking workflow construction.
We propose a neural encoder-decoder model that utilizes both visual and textual information to construct the cooking workflow.
arXiv Detail & Related papers (2020-08-20T18:31:25Z) - A Named Entity Based Approach to Model Recipes [9.18959130745234]
We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure.
Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state.
The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients.
arXiv Detail & Related papers (2020-04-25T16:37:26Z) - RecipeGPT: Generative Pre-training Based Cooking Recipe Generation and
Evaluation System [29.150333060513177]
We present RecipeGPT, a novel online recipe generation and evaluation system.
System provides two modes of text generations: instruction generation from given recipe title and ingredients; and ingredient generation from recipe title and cooking instructions.
Back-end text generation module comprises a generative pre-trained language model GPT-2 fine-tuned on a large cooking recipe dataset.
arXiv Detail & Related papers (2020-03-05T09:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.