User-Driven Research of Medical Note Generation Software
- URL: http://arxiv.org/abs/2205.02549v2
- Date: Fri, 6 May 2022 07:48:48 GMT
- Title: User-Driven Research of Medical Note Generation Software
- Authors: Tom Knoll, Francesco Moramarco, Alex Papadopoulos Korfiatis, Rachel
Young, Claudia Ruffini, Mark Perera, Christian Perstl, Ehud Reiter, Anya
Belz, Aleksandar Savkov
- Abstract summary: We present three rounds of user studies carried out in the context of developing a medical note generation system.
We discuss the participating clinicians' impressions and views of how the system ought to be adapted to be of value to them.
We describe a three-week test run of the system in a live telehealth clinical practice.
- Score: 49.85146209418244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A growing body of work uses Natural Language Processing (NLP) methods to
automatically generate medical notes from audio recordings of doctor-patient
consultations. However, there are very few studies on how such systems could be
used in clinical practice, how clinicians would adjust to using them, or how
system design should be influenced by such considerations. In this paper, we
present three rounds of user studies, carried out in the context of developing
a medical note generation system. We present, analyse and discuss the
participating clinicians' impressions and views of how the system ought to be
adapted to be of value to them. Next, we describe a three-week test run of the
system in a live telehealth clinical practice. Major findings include (i) the
emergence of five different note-taking behaviours; (ii) the importance of the
system generating notes in real time during the consultation; and (iii) the
identification of a number of clinical use cases that could prove challenging
for automatic note generation systems.
Related papers
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)
First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.
Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.
Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
We consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations without human expert annotation.
A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose.
The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference.
arXiv Detail & Related papers (2023-10-25T08:55:48Z) - Investigating Alternative Feature Extraction Pipelines For Clinical Note
Phenotyping [0.0]
Using computational systems for the extraction of medical attributes offers many applications.
BERT-based models can be used to transform clinical notes into a series of representations.
We propose an alternative pipeline utilizing ScispaCyNeumann for extraction of common diseases.
arXiv Detail & Related papers (2023-10-05T02:51:51Z) - Conceptualizing Machine Learning for Dynamic Information Retrieval of
Electronic Health Record Notes [6.1656026560972]
This work conceptualizes the use of EHR audit logs for machine learning as a source of supervision of note relevance in a specific clinical context.
We show that our methods can achieve an AUC of 0.963 for predicting which notes will be read in an individual note writing session.
arXiv Detail & Related papers (2023-08-09T21:04:19Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
We propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction.
A new large medical dialogue dataset with multi-level fine-grained annotations is introduced.
We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies.
arXiv Detail & Related papers (2022-04-19T16:43:21Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
In recent years, machine learning models have rapidly become better at generating clinical consultation notes.
We present an extensive human evaluation study where 5 clinicians listen to 57 mock consultations, write their own notes, post-edit a number of automatically generated notes, and extract all the errors.
We find that a simple, character-based Levenshtein distance metric performs on par if not better than common model-based metrics like BertScore.
arXiv Detail & Related papers (2022-04-01T14:04:16Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - A preliminary study on evaluating Consultation Notes with Post-Editing [67.30200768442926]
We propose a semi-automatic approach whereby physicians post-edit generated notes before submitting them.
We conduct a preliminary study on the time saving of automatically generated consultation notes with post-editing.
We time this and find that it is faster than writing the note from scratch.
arXiv Detail & Related papers (2021-04-09T14:42:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.