Can collaborative learning be private, robust and scalable?
- URL: http://arxiv.org/abs/2205.02652v1
- Date: Thu, 5 May 2022 13:51:44 GMT
- Title: Can collaborative learning be private, robust and scalable?
- Authors: Dmitrii Usynin, Helena Klause, Daniel Rueckert, Georgios Kaissis
- Abstract summary: We investigate the effectiveness of combining differential privacy, model compression and adversarial training to improve the robustness of models against adversarial samples in train- and inference-time attacks.
Our investigation provides a practical overview of various methods that allow one to achieve a competitive model performance, a significant reduction in model's size and an improved empirical adversarial robustness without a severe performance degradation.
- Score: 6.667150890634173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the effectiveness of combining differential privacy, model
compression and adversarial training to improve the robustness of models
against adversarial samples in train- and inference-time attacks. We explore
the applications of these techniques as well as their combinations to determine
which method performs best, without a significant utility trade-off. Our
investigation provides a practical overview of various methods that allow one
to achieve a competitive model performance, a significant reduction in model's
size and an improved empirical adversarial robustness without a severe
performance degradation.
Related papers
- DeMem: Privacy-Enhanced Robust Adversarial Learning via De-Memorization [2.473007680791641]
Adversarial robustness is essential for ensuring the trustworthiness of machine learning models in real-world applications.
Previous studies have shown that enhancing adversarial robustness through adversarial training increases vulnerability to privacy attacks.
We propose DeMem, which selectively targets high-risk samples, achieving a better balance between privacy protection and model robustness.
arXiv Detail & Related papers (2024-12-08T00:22:58Z) - Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.
We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.
We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - Provably Better Explanations with Optimized Aggregation of Feature Attributions [36.22433695108499]
Using feature attributions for post-hoc explanations is a common practice to understand and verify the predictions of opaque machine learning models.
We propose a novel approach to derive optimal convex combinations of feature attributions that yield provable improvements of desired quality criteria.
arXiv Detail & Related papers (2024-06-07T17:03:43Z) - Adversarial Fine-tuning of Compressed Neural Networks for Joint Improvement of Robustness and Efficiency [3.3490724063380215]
Adrial training has been presented as a mitigation strategy which can result in more robust models.
We explore the effects of two different model compression methods -- structured weight pruning and quantization -- on adversarial robustness.
We show that adversarial fine-tuning of compressed models can achieve robustness performance comparable to adversarially trained models.
arXiv Detail & Related papers (2024-03-14T14:34:25Z) - The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for
Improving Adversarial Training [72.39526433794707]
Adversarial training and its variants have been shown to be the most effective approaches to defend against adversarial examples.
We propose a novel adversarial training scheme that encourages the model to produce similar outputs for an adversarial example and its inverse adversarial'' counterpart.
Our training method achieves state-of-the-art robustness as well as natural accuracy.
arXiv Detail & Related papers (2022-11-01T15:24:26Z) - Adversarial Fine-tune with Dynamically Regulated Adversary [27.034257769448914]
In many real-world applications such as health diagnosis and autonomous surgical robotics, the standard performance is more valued over model robustness against such extremely malicious attacks.
This work proposes a simple yet effective transfer learning-based adversarial training strategy that disentangles the negative effects of adversarial samples on model's standard performance.
In addition, we introduce a training-friendly adversarial attack algorithm, which facilitates the boost of adversarial robustness without introducing significant training complexity.
arXiv Detail & Related papers (2022-04-28T00:07:15Z) - Improving Gradient-based Adversarial Training for Text Classification by
Contrastive Learning and Auto-Encoder [18.375585982984845]
We focus on enhancing the model's ability to defend gradient-based adversarial attack during the model's training process.
We propose two novel adversarial training approaches: CARL and RAR.
Experiments show that the proposed two approaches outperform strong baselines on various text classification datasets.
arXiv Detail & Related papers (2021-09-14T09:08:58Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
A range of adversarial defense techniques have been proposed to mitigate the interference of adversarial noise.
Pre-processing methods may suffer from the robustness degradation effect.
A potential cause of this negative effect is that adversarial training examples are static and independent to the pre-processing model.
We propose a method called Joint Adversarial Training based Pre-processing (JATP) defense.
arXiv Detail & Related papers (2021-06-10T01:45:32Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Regularizers for Single-step Adversarial Training [49.65499307547198]
We propose three types of regularizers that help to learn robust models using single-step adversarial training methods.
Regularizers mitigate the effect of gradient masking by harnessing on properties that differentiate a robust model from that of a pseudo robust model.
arXiv Detail & Related papers (2020-02-03T09:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.