Representation Learning for Compressed Video Action Recognition via
Attentive Cross-modal Interaction with Motion Enhancement
- URL: http://arxiv.org/abs/2205.03569v2
- Date: Tue, 10 May 2022 16:15:27 GMT
- Title: Representation Learning for Compressed Video Action Recognition via
Attentive Cross-modal Interaction with Motion Enhancement
- Authors: Bing Li, Jiaxin Chen, Dongming Zhang, Xiuguo Bao, Di Huang
- Abstract summary: This paper proposes a novel framework, namely Attentive Cross-modal Interaction Network with Motion Enhancement.
It follows the two-stream architecture, i.e. one for the RGB modality and the other for the motion modality.
Experiments on the UCF-101, HMDB-51 and Kinetics-400 benchmarks demonstrate the effectiveness and efficiency of MEACI-Net.
- Score: 28.570085937225976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compressed video action recognition has recently drawn growing attention,
since it remarkably reduces the storage and computational cost via replacing
raw videos by sparsely sampled RGB frames and compressed motion cues (e.g.,
motion vectors and residuals). However, this task severely suffers from the
coarse and noisy dynamics and the insufficient fusion of the heterogeneous RGB
and motion modalities. To address the two issues above, this paper proposes a
novel framework, namely Attentive Cross-modal Interaction Network with Motion
Enhancement (MEACI-Net). It follows the two-stream architecture, i.e. one for
the RGB modality and the other for the motion modality. Particularly, the
motion stream employs a multi-scale block embedded with a denoising module to
enhance representation learning. The interaction between the two streams is
then strengthened by introducing the Selective Motion Complement (SMC) and
Cross-Modality Augment (CMA) modules, where SMC complements the RGB modality
with spatio-temporally attentive local motion features and CMA further combines
the two modalities with selective feature augmentation. Extensive experiments
on the UCF-101, HMDB-51 and Kinetics-400 benchmarks demonstrate the
effectiveness and efficiency of MEACI-Net.
Related papers
- Motion Inversion for Video Customization [31.607669029754874]
We present a novel approach for motion in generation, addressing the widespread gap in the exploration of motion representation within video models.
We introduce Motion Embeddings, a set of explicit, temporally coherent embeddings derived from given video.
Our contributions include a tailored motion embedding for customization tasks and a demonstration of the practical advantages and effectiveness of our method.
arXiv Detail & Related papers (2024-03-29T14:14:22Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based
Motion Segmentation [101.19290845597918]
This paper presents a Motion Estimation (ME) module and an Event Denoising (ED) module jointly optimized in a mutually reinforced manner.
Taking temporal correlation as guidance, ED module calculates the confidence that each event belongs to real activity events, and transmits it to ME module to update energy function of motion segmentation for noise suppression.
arXiv Detail & Related papers (2022-03-22T13:40:26Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - TSI: Temporal Saliency Integration for Video Action Recognition [32.18535820790586]
We propose a Temporal Saliency Integration (TSI) block, which mainly contains a Salient Motion Excitation (SME) module and a Cross-scale Temporal Integration (CTI) module.
SME aims to highlight the motion-sensitive area through local-global motion modeling.
CTI is designed to perform multi-scale temporal modeling through a group of separate 1D convolutions respectively.
arXiv Detail & Related papers (2021-06-02T11:43:49Z) - Learning Comprehensive Motion Representation for Action Recognition [124.65403098534266]
2D CNN-based methods are efficient but may yield redundant features due to applying the same 2D convolution kernel to each frame.
Recent efforts attempt to capture motion information by establishing inter-frame connections while still suffering the limited temporal receptive field or high latency.
We propose a Channel-wise Motion Enhancement (CME) module to adaptively emphasize the channels related to dynamic information with a channel-wise gate vector.
We also propose a Spatial-wise Motion Enhancement (SME) module to focus on the regions with the critical target in motion, according to the point-to-point similarity between adjacent feature maps.
arXiv Detail & Related papers (2021-03-23T03:06:26Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
We present a Motion-Attentive Transition Network (MATNet) for zero-shot object segmentation.
An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder.
In this way, the encoder becomes deeply internative, allowing for closely hierarchical interactions between object motion and appearance.
arXiv Detail & Related papers (2020-03-09T16:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.