A Review on Viewpoints and Path-planning for UAV-based 3D Reconstruction
- URL: http://arxiv.org/abs/2205.03716v1
- Date: Sat, 7 May 2022 20:29:39 GMT
- Title: A Review on Viewpoints and Path-planning for UAV-based 3D Reconstruction
- Authors: Mehdi Maboudi, MohammadReza Homaei, Soohwan Song, Shirin Malihi,
Mohammad Saadatseresht, and Markus Gerke
- Abstract summary: 3D reconstruction using the data captured by UAVs is also attracting attention in research and industry.
This review paper investigates a wide range of model-free and model-based algorithms for viewpoint and path planning for 3D reconstruction of large-scale objects.
- Score: 3.0479044961661708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) are widely used platforms to carry data
capturing sensors for various applications. The reason for this success can be
found in many aspects: the high maneuverability of the UAVs, the capability of
performing autonomous data acquisition, flying at different heights, and the
possibility to reach almost any vantage point. The selection of appropriate
viewpoints and planning the optimum trajectories of UAVs is an emerging topic
that aims at increasing the automation, efficiency and reliability of the data
capturing process to achieve a dataset with desired quality. On the other hand,
3D reconstruction using the data captured by UAVs is also attracting attention
in research and industry. This review paper investigates a wide range of
model-free and model-based algorithms for viewpoint and path planning for 3D
reconstruction of large-scale objects. The analyzed approaches are limited to
those that employ a single-UAV as a data capturing platform for outdoor 3D
reconstruction purposes. In addition to discussing the evaluation strategies,
this paper also highlights the innovations and limitations of the investigated
approaches. It concludes with a critical analysis of the existing challenges
and future research perspectives.
Related papers
- UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking [0.0]
Unmanned Aerial Vehicles (UAVs) have revolutionized the process of gathering and analyzing data in diverse research domains.
UAV datasets consist of various types of data, such as satellite imagery, images captured by drones, and videos.
These datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and tracking.
arXiv Detail & Related papers (2024-09-05T04:47:36Z) - Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge [20.459377705070043]
This report presents the 1st winning model for UG2+, a task in CVPR 2024 UAV Tracking and Pose-Estimation Challenge.
We propose a multi-modal UAV detection, classification, and 3D tracking method for accurate UAV classification and tracking.
Our system integrates cutting-edge classification techniques and sophisticated post-processing steps to boost accuracy and robustness.
arXiv Detail & Related papers (2024-05-26T07:21:18Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Bag of Views: An Appearance-based Approach to Next-Best-View Planning
for 3D Reconstruction [3.637651065605852]
Bag-of-Views (BoV) is a fully appearance-based model used to assign utility to captured views.
View Planning Toolbox (VPT) is a lightweight package for training and testing machine learning-based view planning frameworks.
arXiv Detail & Related papers (2023-07-11T22:56:55Z) - Survey and Systematization of 3D Object Detection Models and Methods [3.472931603805115]
We provide a comprehensive survey of recent developments from 2012-2021 in 3D object detection.
We introduce fundamental concepts, focus on a broad range of different approaches that have emerged over the past decade.
We propose a systematization that provides a practical framework for comparing these approaches with the goal of guiding future development, evaluation and application activities.
arXiv Detail & Related papers (2022-01-23T20:06:07Z) - Deep Learning for UAV-based Object Detection and Tracking: A Survey [25.34399619170044]
Unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS)
Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks.
This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods.
arXiv Detail & Related papers (2021-10-25T04:43:24Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.