PS-Net: Deep Partially Separable Modelling for Dynamic Magnetic
Resonance Imaging
- URL: http://arxiv.org/abs/2205.04073v1
- Date: Mon, 9 May 2022 07:06:02 GMT
- Title: PS-Net: Deep Partially Separable Modelling for Dynamic Magnetic
Resonance Imaging
- Authors: Chentao Cao, Zhuo-Xu Cui, Qingyong Zhu, Dong Liang, Yanjie Zhu
- Abstract summary: We propose a learned low-rank method for dynamic MR imaging.
Experiments on the cardiac cine dataset show that the proposed model outperforms the state-of-the-art compressed sensing (CS) methods.
- Score: 6.974773529651233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods driven by the low-rank regularization have achieved
attractive performance in dynamic magnetic resonance (MR) imaging. However,
most of these methods represent low-rank prior by hand-crafted nuclear norm,
which cannot accurately approximate the low-rank prior over the entire dataset
through a fixed regularization parameter. In this paper, we propose a learned
low-rank method for dynamic MR imaging. In particular, we unrolled the
semi-quadratic splitting method (HQS) algorithm for the partially separable
(PS) model to a network, in which the low-rank is adaptively characterized by a
learnable null-space transform. Experiments on the cardiac cine dataset show
that the proposed model outperforms the state-of-the-art compressed sensing
(CS) methods and existing deep learning methods both quantitatively and
qualitatively.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - A Compact Implicit Neural Representation for Efficient Storage of
Massive 4D Functional Magnetic Resonance Imaging [14.493622422645053]
fMRI compressing poses unique challenges due to its intricate temporal dynamics, low signal-to-noise ratio, and complicated underlying redundancies.
This paper reports a novel compression paradigm specifically tailored for fMRI data based on Implicit Neural Representation (INR)
arXiv Detail & Related papers (2023-11-30T05:54:37Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Deep Manifold Learning for Dynamic MR Imaging [30.70648993986445]
We develop a deep learning method on a nonlinear manifold to explore the temporal redundancy of dynamic signals to reconstruct cardiac MRI data.
The proposed method can obtain improved reconstruction compared with a compressed sensing (CS) method k-t SLR and two state-of-the-art deep learning-based methods, DC-CNN and CRNN.
arXiv Detail & Related papers (2021-03-09T02:18:08Z) - Deep Low-rank plus Sparse Network for Dynamic MR Imaging [18.09395940969876]
We propose a model-based low-rank plus sparse network, dubbed L+S-Net, for dynamic MR reconstruction.
Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods.
arXiv Detail & Related papers (2020-10-26T15:55:24Z) - Deep Low-rank Prior in Dynamic MR Imaging [30.70648993986445]
We introduce two novel schemes to introduce the learnable low-rank prior into deep network architectures.
In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net.
In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks.
arXiv Detail & Related papers (2020-06-22T09:26:10Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
We propose a simple literature-based method for the efficient approximation of gradients in neural ODE models.
We compare it with the reverse dynamic method to train neural ODEs on classification, density estimation, and inference approximation tasks.
arXiv Detail & Related papers (2020-03-11T13:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.