Polynomial Equivalence of Complexity Geometries
- URL: http://arxiv.org/abs/2205.04485v3
- Date: Tue, 25 Jun 2024 21:15:31 GMT
- Title: Polynomial Equivalence of Complexity Geometries
- Authors: Adam R. Brown,
- Abstract summary: This paper proves the equivalence of a broad class of definitions of quantum computational complexity.
We study right-invariant metrics on the unitary group.
We delineate the equivalence class of metrics that have the same computational power as quantum circuits.
- Score: 0.05657375260432172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proves the polynomial equivalence of a broad class of definitions of quantum computational complexity. We study right-invariant metrics on the unitary group -- often called `complexity geometries' following the definition of quantum complexity proposed by Nielsen -- and delineate the equivalence class of metrics that have the same computational power as quantum circuits. Within this universality class, any unitary that can be reached in one metric can be approximated in any other metric in the class with a slowdown that is at-worst polynomial in the length and number of qubits and inverse-polynomial in the permitted error. We describe the equivalence classes for two different kinds of error we might tolerate: Killing-distance error, and operator-norm error. All metrics in both equivalence classes are shown to have exponential diameter; all metrics in the operator-norm equivalence class are also shown to give an alternative definition of the quantum complexity class BQP. My results extend those of Nielsen et al., who in 2006 proved that one particular metric is polynomially equivalent to quantum circuits. The Nielsen et al. metric is incredibly highly curved. I show that the greatly enlarged equivalence class established in this paper also includes metrics that have modest curvature. I argue that the modest curvature makes these metrics more amenable to the tools of differential geometry, and therefore makes them more promising starting points for Nielsen's program of using differential geometry to prove complexity lowerbounds.
Related papers
- The Complexity of Being Entangled [0.0]
Nielsen's approach to quantum state complexity relates the minimal number of quantum gates required to prepare a state to the length of geodesics computed with a certain norm on the manifold of unitary transformations.
For a bipartite system, we investigate binding complexity, which corresponds to norms in which gates acting on a single subsystem are free of cost.
arXiv Detail & Related papers (2023-11-07T19:00:02Z) - Fluctuations, uncertainty relations, and the geometry of quantum state
manifolds [0.0]
The complete quantum metric of a parametrized quantum system has a real part and a symplectic imaginary part.
We show that for a mixed quantum-classical system both real and imaginary parts of the quantum metric contribute to the dynamics.
arXiv Detail & Related papers (2023-09-07T10:31:59Z) - Enriching Disentanglement: From Logical Definitions to Quantitative Metrics [59.12308034729482]
Disentangling the explanatory factors in complex data is a promising approach for data-efficient representation learning.
We establish relationships between logical definitions and quantitative metrics to derive theoretically grounded disentanglement metrics.
We empirically demonstrate the effectiveness of the proposed metrics by isolating different aspects of disentangled representations.
arXiv Detail & Related papers (2023-05-19T08:22:23Z) - An Exponential Separation Between Quantum Query Complexity and the
Polynomial Degree [79.43134049617873]
In this paper, we demonstrate an exponential separation between exact degree and approximate quantum query for a partial function.
For an alphabet size, we have a constant versus separation complexity.
arXiv Detail & Related papers (2023-01-22T22:08:28Z) - A Quantum Complexity Lowerbound from Differential Geometry [0.0]
I apply the Bishop-Gromov bound to Nielsen's complexity geometry to prove lowerbounds on the quantum complexity of a typical unitary.
For a broad class of penalty schedules, the typical complexity is shown to be exponentially large in the number of qubits.
This method realizes the original vision of Nielsen, which was to apply the tools of differential geometry to study quantum complexity.
arXiv Detail & Related papers (2021-12-10T18:28:01Z) - Universality in long-distance geometry and quantum complexity [0.04260910081285213]
We show that metrics on low-dimensional Lie groups have markedly different short-distance properties but nearly identical distance functions at long distances.
We argue for the existence of a large class of definitions of quantum complexity.
arXiv Detail & Related papers (2021-11-24T18:52:44Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Geometry of quantum complexity [0.0]
Computational complexity is a new quantum information concept that may play an important role in holography.
We consider quantum computational complexity for $n$ qubits using Nielsen's geometrical approach.
arXiv Detail & Related papers (2020-11-15T18:41:19Z) - Generalized Sliced Distances for Probability Distributions [47.543990188697734]
We introduce a broad family of probability metrics, coined as Generalized Sliced Probability Metrics (GSPMs)
GSPMs are rooted in the generalized Radon transform and come with a unique geometric interpretation.
We consider GSPM-based gradient flows for generative modeling applications and show that under mild assumptions, the gradient flow converges to the global optimum.
arXiv Detail & Related papers (2020-02-28T04:18:00Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z) - Joint measurability meets Birkhoff-von Neumann's theorem [77.34726150561087]
We prove that joint measurability arises as a mathematical feature of DNTs in this context, needed to establish a characterisation similar to Birkhoff-von Neumann's.
We also show that DNTs emerge naturally from a particular instance of a joint measurability problem, remarking its relevance in general operator theory.
arXiv Detail & Related papers (2018-09-19T18:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.