Efficient Burst Raw Denoising with Variance Stabilization and
Multi-frequency Denoising Network
- URL: http://arxiv.org/abs/2205.04721v1
- Date: Tue, 10 May 2022 07:46:45 GMT
- Title: Efficient Burst Raw Denoising with Variance Stabilization and
Multi-frequency Denoising Network
- Authors: Dasong Li, Yi Zhang, Ka Lung Law, Xiaogang Wang, Hongwei Qin and
Hongsheng Li
- Abstract summary: Smartphones have small apertures and small sensor cells, which lead to noisy images in low light environment.
We propose an efficient burst denoising system based on noise prior integration, multi-frame alignment and multi-frame denoising.
Our three-stage design is efficient and shows strong performance on burst denoising.
- Score: 39.829676908118806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the growing popularity of smartphones, capturing high-quality images is
of vital importance to smartphones. The cameras of smartphones have small
apertures and small sensor cells, which lead to the noisy images in low light
environment. Denoising based on a burst of multiple frames generally
outperforms single frame denoising but with the larger compututional cost. In
this paper, we propose an efficient yet effective burst denoising system. We
adopt a three-stage design: noise prior integration, multi-frame alignment and
multi-frame denoising. First, we integrate noise prior by pre-processing raw
signals into a variance-stabilization space, which allows using a small-scale
network to achieve competitive performance. Second, we observe that it is
essential to adopt an explicit alignment for burst denoising, but it is not
necessary to integrate a learning-based method to perform multi-frame
alignment. Instead, we resort to a conventional and efficient alignment method
and combine it with our multi-frame denoising network. At last, we propose a
denoising strategy that processes multiple frames sequentially. Sequential
denoising avoids filtering a large number of frames by decomposing multiple
frames denoising into several efficient sub-network denoising. As for each
sub-network, we propose an efficient multi-frequency denoising network to
remove noise of different frequencies. Our three-stage design is efficient and
shows strong performance on burst denoising. Experiments on synthetic and real
raw datasets demonstrate that our method outperforms state-of-the-art methods,
with less computational cost. Furthermore, the low complexity and high-quality
performance make deployment on smartphones possible.
Related papers
- Temporal As a Plugin: Unsupervised Video Denoising with Pre-Trained Image Denoisers [30.965705043127144]
In this paper, we propose a novel unsupervised video denoising framework, named Temporal As aTAP' (TAP)
By incorporating temporal modules, our method can harness temporal information across noisy frames, complementing its power of spatial denoising.
Compared to other unsupervised video denoising methods, our framework demonstrates superior performance on both sRGB and raw video denoising datasets.
arXiv Detail & Related papers (2024-09-17T15:05:33Z) - Low Latency Video Denoising for Online Conferencing Using CNN
Architectures [4.7805617044617446]
We propose a pipeline for real-time video denoising with low runtime cost and high perceptual quality.
A custom noise detector analyzer provides real-time feedback to adapt the weights and improve the models' output.
arXiv Detail & Related papers (2023-02-17T00:55:54Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.