Efficient Automated Deep Learning for Time Series Forecasting
- URL: http://arxiv.org/abs/2205.05511v2
- Date: Fri, 13 May 2022 08:55:32 GMT
- Title: Efficient Automated Deep Learning for Time Series Forecasting
- Authors: Difan Deng, Florian Karl, Frank Hutter, Bernd Bischl, Marius Lindauer
- Abstract summary: We propose an efficient approach for the joint optimization of neural architecture and hyperparameters of the entire data processing pipeline for time series forecasting.
In contrast to common NAS search spaces, we designed a novel neural architecture search space covering various state-of-the-art architectures.
We empirically study several different budget types enabling efficient multi-fidelity optimization on different forecasting datasets.
- Score: 42.47842694670572
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed tremendously improved efficiency of Automated
Machine Learning (AutoML), especially Automated Deep Learning (AutoDL) systems,
but recent work focuses on tabular, image, or NLP tasks. So far, little
attention has been paid to general AutoDL frameworks for time series
forecasting, despite the enormous success in applying different novel
architectures to such tasks. In this paper, we propose an efficient approach
for the joint optimization of neural architecture and hyperparameters of the
entire data processing pipeline for time series forecasting. In contrast to
common NAS search spaces, we designed a novel neural architecture search space
covering various state-of-the-art architectures, allowing for an efficient
macro-search over different DL approaches. To efficiently search in such a
large configuration space, we use Bayesian optimization with multi-fidelity
optimization. We empirically study several different budget types enabling
efficient multi-fidelity optimization on different forecasting datasets.
Furthermore, we compared our resulting system, dubbed Auto-PyTorch-TS, against
several established baselines and show that it significantly outperforms all of
them across several datasets.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - auto-sktime: Automated Time Series Forecasting [18.640815949661903]
We introduce auto-sktime, a novel framework for automated time series forecasting.
The proposed framework uses the power of automated machine learning (AutoML) techniques to automate the creation of the entire forecasting pipeline.
Experimental results on 64 diverse real-world time series datasets demonstrate the effectiveness and efficiency of the framework.
arXiv Detail & Related papers (2023-12-13T21:34:30Z) - ASP: Automatic Selection of Proxy dataset for efficient AutoML [16.813109584129514]
We propose an Automatic Selection of Proxy dataset framework (ASP) to dynamically find the informative proxy subsets of training data at each epoch.
ASP can obtain better results than other data selection methods at all selection ratios.
arXiv Detail & Related papers (2023-10-17T09:36:22Z) - POPNASv3: a Pareto-Optimal Neural Architecture Search Solution for Image
and Time Series Classification [8.190723030003804]
This article presents the third version of a sequential model-based NAS algorithm targeting different hardware environments and multiple classification tasks.
Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks.
The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.
arXiv Detail & Related papers (2022-12-13T17:14:14Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - DHA: End-to-End Joint Optimization of Data Augmentation Policy,
Hyper-parameter and Architecture [81.82173855071312]
We propose an end-to-end solution that integrates the AutoML components and returns a ready-to-use model at the end of the search.
Dha achieves state-of-the-art (SOTA) results on various datasets, especially 77.4% accuracy on ImageNet with cell based search space.
arXiv Detail & Related papers (2021-09-13T08:12:50Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
We study a new challenging problem of efficient deployment for diverse tasks with different resources, where the resource constraint and task of interest corresponding to a group of classes are dynamically specified at testing time.
Previous NAS approaches seek to design architectures for all classes simultaneously, which may not be optimal for some individual tasks.
We present a novel and general framework, called Elastic Architecture Search (EAS), permitting instant specializations at runtime for diverse tasks with various resource constraints.
arXiv Detail & Related papers (2021-08-03T00:54:27Z) - AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with
Autotuned Data-Parallel Training for Tabular Data [11.552769149674544]
Development of high-performing predictive models for large data sets is a challenging task.
Recent automated machine learning (AutoML) is emerging as a promising approach to automate predictive model development.
We have developed AgEBO-Tabular, an approach to combine aging evolution (AgE) and a parallel NAS method that searches over neural architecture space.
arXiv Detail & Related papers (2020-10-30T16:28:48Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.